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We develop a steady-state analytical and numerical model of the optical response of power-recycled Fabry–
Perot Michelson laser gravitational-wave detectors to nonlinear thermal focusing in optical substrates. We
assume that the thermal distortions are small enough that we can represent all intracavity fields as linear
combinations of basis functions derived from the eigenmodes of a Fabry–Perot arm cavity. We have included
the effects of power absorption in optical substrates and coatings, mismatches between laser wave-front and
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1. INTRODUCTION
In the present decade, a number of long-baseline laser in-
terferometers are expected to become operational and to
begin a search for astrophysical sources of gravitational
radiation.1–3 These include the Laser Interferometer
Gravitational Wave Observatory4,5 (LIGO), the VIRGO
project,6 the GEO 600 project,7 and the TAMA 300
project.8 All of these detectors will employ a variant of a
Michelson interferometer illuminated with stabilized la-
ser light. The light will be phase modulated at one or
more radio frequencies, producing modulation sidebands
about the carrier frequency that provide a phase refer-
ence for sensing small variations of the interferometer
arm lengths.9 Gravitational radiation will produce a dif-
ferential length change in the arms of the Michelson in-
terferometer, resulting in a signal at the output port.

In Fig. 1, we show the configuration of the initial LIGO
detector, a power-recycled Fabry–Perot Michelson inter-
ferometer (PRFPMI). The light from a stabilized laser
source enters the interferometer, which is made of an
asymmetric Michelson interferometer with Fabry–Perot
arm cavities. The arm cavities consist of polished input
and end test masses (ITM and ETM, respectively) whose
coated surfaces also act as mirrors to resonantly enhance
the laser light. An additional power-recycling mirror
(PRM) placed between the laser and beam splitter in-
creases the total light power available to the arms by
forming a ‘‘recycling cavity’’ together with the beam split-
ter and arm-cavity input mirrors. The sideband fre-
quency and interferometer lengths are adjusted so that
the sidebands resonate in the recycling cavity but not in
the arms, while the carrier resonates in both sets of cavi-
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ties. This allows extraction of control signals for all four
length degrees of freedom.10

The noise level in the detection band at the interferom-
eter output port must be held below the required strain
sensitivity. The primary noise sources limiting the inter-
ferometer sensitivity are seismic noise at frequencies be-
low 100 Hz, thermal noise between roughly 100 and 300
Hz, and photon-counting noise at frequencies greater
than 300 Hz. Photon-counting noise is suppressed by use
of sufficient laser power; a design strain sensitivity of
roughly 10221 over a time period of a millisecond will re-
quire a power of several hundred watts incident on the
beam splitter.

A concern in the operation of an interferometer at such
high power levels is optical distortion. The presence of
absorption in the coatings and substrates of the optics can
give rise to nonuniform heating due to the Gaussian in-
tensity profile of the laser light. This heating will cause
a temperature rise in the substrate, which, coupled to the
temperature dependence of the substrate index of refrac-
tion, will cause a distortion of the wave front of the light
transmitted through the substrate. For example, the ini-
tial LIGO design provides for fused-silica input test
masses that are 10 cm thick. To ensure the stability of
the arm-cavity resonant mode, the ITM radius of curva-
ture is set to be several times the length of the arm cavity,
or of order 10 km. By comparison, the substrate heating
due to a nominal substrate and coating absorption of 5
ppm/cm and 1 ppm (parts per million), respectively,
causes the generation of a thermal lens in the substrate
with a nominal focal length of 8 km. This significant dis-
tortion can have important consequences for both the
2003 Optical Society of America
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power buildup of the RF sidebands in the recycling cavity
and the interferometer sensitivity.

There have been a number of efforts made to under-
stand the effects of the propagation of distorted wave
fronts through gravitational-wave interferometers, in-
cluding an approximate treatment of wave-front distor-
tion in power-recycled and dual-recycled systems due to
imperfections in the shape or alignment of some optical
components,11 an approximate treatment of thermal lens-
ing and surface deformation in early Fabry–Perot Mich-
elson designs,12 and an approximate description of ther-
mal lensing in alternate signal-extraction designs.13,14

Each of these discussions emphasized the effects of opti-
cal distortion on a particular subset of the optical perfor-
mance characteristics of an interferometer. In principle,
fast Fourier transform (FFT) methods15–17 can be used to
simulate a thermally loaded interferometer, but the com-
putational cost of an iterated self-consistent FFT numeri-
cal analysis of the corresponding intracavity fields would
be prohibitive.

By contrast, we have developed a flexible and robust
analytical and numerical model of the effects of wave-
front distortion on the optical performance of a
gravitational-wave interferometer that requires far fewer
computational resources than an FFT approach. The
model includes accurate contributions to the thermal dis-
tortions in all substrates due to optical absorption in the
substrate and both coatings of each test mass,18 the ef-
fects of any mismatch between the curvatures of the laser
wave front and the mirror surface at each reflection, and
the diffraction by an aperture at each instance of reflec-
tion and transmission. Operators representing these
physical effects on the reflection and transmission prop-
erties of mirrors and beam splitters are explicitly incorpo-
rated into a set of transfer (or scattering) matrices that
relate output fields to input fields incident on the surfaces
of those elements. The corresponding transfer matrices
of more complex optical components (e.g., a Fabry–Perot
interferometer) can subsequently be constructed in a hi-
erarchical fashion from those of simpler systems. With
this approach, the model determines a self-consistent
steady-state solution to the interferometer power buildup
in the presence of optical distortion and employs an inter-

Fig. 1. Schematic configuration of the initial LIGO detector, a
power-recycled Fabry–Perot Michelson interferometer (PRF-
PMI).
nal numerical mechanism to preserve the nearly ideal
longitudinal phase-resonance conditions that would oth-
erwise be provided by an external servo-locking control
system. We have developed computer code representing
this model that is sufficiently flexible to allow new physi-
cal effects to be added to the simulations with a modicum
of effort and that can be stopped, interrogated, and re-
started at any stage of a simulation. Our implementa-
tion of the artificial resonance-locking mechanism pro-
vides an exponential reduction in the execution time
required for a self-consistent simulation by dynamically
adjusting the frequency response of the interferometer.

Our current model employs basis-function expansions
of the electromagnetic field everywhere in the
interferometer.19–22 In principle, these basis functions
can be spatial eigenfunctions of the interferometer, but in
practice, imperfect mode matching of the multiple cavities
comprising the full interferometer and the presence of ap-
ertures in the system means that round-trip spatial
propagators are not Hermitian, and the eigenfunctions
are not power orthogonal.23–25 Therefore we choose an
expansion of the intracavity field in an arbitrary set of
power-orthogonal unperturbed spatial basis functions
that are not necessarily eigenfunctions of any subsystem
of a thermally loaded, perturbed interferometer. Since
we can move from one spatial representation to another
simply by recomputing the propagator matrix elements,
the relative merit of a set of possible basis choices is de-
termined by the number of basis modes needed to de-
scribe the intracavity field accurately. Our analysis of
the operators encapsulating the physics of the perturba-
tive phenomena described in the model is invariant under
such a change of spatial basis. Nevertheless, the choice
of an incomplete subset of basis functions inevitably in-
troduces false optical losses because power is transferred
to higher-order spatial modes that are not included in a
necessarily finite numerical simulation. Therefore we in-
troduce unitary approximations for nondiffractive opera-
tors that monotonically improve as more basis functions
are included in the simulation.

In Section 2 of this paper, we describe our representa-
tion of the intracavity electromagnetic field and the op-
erators incorporated into the transfer matrices of the sub-
systems comprising components of typical interferometric
gravitational-wave detectors. We develop a unitary ap-
proximation for nondiffractive operators expanded in
finite-dimensional basis sets, and, in our discussions of
the Fabry–Perot and Michelson interferometers, we in-
troduce abstract idealizations of the control systems
needed to maintain different intracavity resonance condi-
tions. In Section 3, using these building blocks, we con-
struct a model of the initial LIGO interferometer, and we
point out that the basis functions chosen for a matrix de-
scription of the interferometer need not be spatial eigen-
functions of the fully coupled resonators. As a prelimi-
nary verification of our method, we compare the
predictions of our numerical implementation of this
model in a set of well-defined linear test cases with the
output generated by a fast-Fourier-transform computer-
code suite. Finally, we simulate the optical performance
of the initial LIGO interferometer under full thermal
load, using a straightforward nonlinear solution method
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that computes the steady-state fields everywhere in the
system after only a few seconds on an ordinary desktop
computer.

2. MODELS OF OPTICAL COMPONENTS
AND STRUCTURES
A. Representation of the Electromagnetic Field
Throughout this work, we represent a propagating laser
electric field E(r, t) with angular carrier frequency v0 as
the real part of a product of a real time-independent po-
larization unit vector e, a complex amplitude function
E(r, t), and the carrier wave function exp@i(k0z 2 v0t)#,
where l0 [ 2p/k0 [ 2pc/v0 is the laser wavelength22:

E~r, t ! [ Re$eE~r, t !exp@i~k0z 2 v0t !#%. (1)

We use the amplitude function E(r, t) to represent any
closely spaced frequency components (such as radio-
frequency-modulated sidebands) as

E~r, t ! [ (
q

Eq~r, t !exp@i~kqz 2 vqt !#, (2)

where the summation is taken over all frequency compo-
nents (including the carrier), Eq(r, t) is the complex-
amplitude function of component q, vq 5 kq /c [ v0
1 Dvq is the angular frequency of component q, and
Dvq [ Dkq /c ! v0 is the angular frequency shift of com-
ponent q. By convention, the carrier is labeled by q
5 0, and therefore Dv0 5 0. We express all field ampli-
tudes in units of (W/cm2)1/2, so that the time-averaged in-
tensity carried by E(r, t) is Ī(r, t) 5

1
2 (quEq(r, t)u2.

We will represent the transverse spatial dependence of
the field amplitude Eq(r, t) at any propagation plane
within a laser interferometric gravitational-wave detector
as a linear superposition of a set of amplitude basis func-
tions with fixed transverse spatial profiles. In general,
these amplitudes are eigenfunctions of a non-Hermitian
integral transform equation (generally a composition of
many consecutive integral transforms, each of which car-
riers the field from one aperture to the next) that de-
scribes round-trip propagation through a specific reso-
nant subsystem of the unperturbed interferometer.
These resonant eigenfunctions can then be propagated
throughout the remainder of the interferometer, defining
a unique set of spatial basis functions.22 Therefore given
the existence of a numerically complete set of these trans-
verse spatial eigenfunctions, we can expand the sideband
amplitude function as

Eq~r, t ! 5 (
mn

Emnq~z, t !umn~r!. (3)

Hence we can convert any composition of two consecutive
integral transforms into a simple matrix product. In
practice, we are interested in the steady-state character-
istics of the detector under thermal load, and we will
clearly indicate the propagation plane under discussion,
so we will usually suppress the explicit coordinates $z, t%
in later sections.

As an example, consider the simple case of laser field
propagation through a distance L [ z2 2 z1 in vacuum.
Suppose that we choose to represent the spatial and tem-
poral properties of this field using N transverse eigen-
functions umn(r) and Q frequency components, including
the carrier and both positive and negative sidebands for
each nonzero radio modulation frequency. We arrange
the expansion coefficients into an N 3 Q ordered matrix
E with elements Emnq , where each row represents the
spatial eigenfunction corresponding to a particular choice
of $m, n% and each column corresponds to a particular
frequency component q, and we assume that L has been
chosen to provide resonant excitation of the fundamental
carrier spatial mode E000 . In this basis, the spatial con-
tribution to the vacuum propagation kernel is given by an
N 3 N diagonal matrix G with elements

Gmn,m8n8 5 exp~iDwmn!dmm8dnn8 , (4)

where Dwmn [ wmn 2 w00 is the net Gouy phase (relative
to the fundamental spatial mode) accumulated by mode
mn over the propagation distance L, and the net longitu-
dinal optical path-length contribution (relative to the car-
rier) is given by a Q 3 Q diagonal matrix V with ele-
ments

Vqq8 5 exp~iDvqt!dqq8 , (5)

where t [ L/c is the propagation time. The components
of the field following the propagation step can then be
computed with the sparse matrix product

E~z2! 5 GE~z1!V. (6)

We are particularly interested in the more complex ex-
ample of a power-recycled Fabry–Perot Michelson laser
gravitational-wave interferometer. In its unperturbed
state (i.e., in the absence of aperture diffraction and ther-
mal wave-front distortions), this detector configuration is
described well by Hermite–Gauss basis functions under
perfect mode-matching conditions. The infinite-aperture
Hermite–Gauss basis is orthonormal (since it is gener-
ated by a Hermitian propagation equation); thus field am-
plitude expansions that use this basis are power
orthogonal,23 allowing time-averaged intensities to be cal-
culated with the sum of the inner products uEq(r, t)u2

5 (mnuEmnq(z, t)u2. If both Gouy and optical path-
length phase contributions are accumulated with Eq. (6),
then we can represent an arbitrary nonastigmatic
Hermite–Gauss basis function umn(x, y) at a given refer-
ence plane using

umn~x, y ! 5 S 1

2m1nm!n!

2

pw2D 1/2

HmS A2x

w
D HnS A2y

w
D

3 expF S i
k

2R
2

1

w2D ~x2 1 y2!G , (7)

where Hn(x) is the Hermite polynomial of order n, w is
the beam spot radius, and R is the wave-front radius of
curvature at that reference plane. Throughout this
work, we will define the x –z plane to be ‘‘horizontal,’’ con-
taining the central beam paths of the two Fabry–Perot
arm cavities in Fig. 1, and the y –z plane to be ‘‘vertical,’’
perpendicular to the horizontal plane and parallel to the
local gravity gradient of the Earth.
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B. Mirrors

1. Aperture-Diffraction and Mirror–Field Curvature
Mismatch Operators
Consider the general problem of the reflection of a propa-
gating electromagnetic field by a perfectly reflecting cylin-
drically symmetric mirror M with spherical radius of cur-
vature RM and aperture diameter 2a. The reflection can
be described in a single step taken from the aperture A at
the reference plane z, conventionally located just before
the reflection from M to the field position z. just after re-
flection has occurred. If the transverse field at z, is
E(x8, y8, z,), then the corresponding field at z. is given
by Huygens’s integral in the Fresnel approximation as24

E~x, y, z.! 5 E
A

dx8dy8K~x, y; x8, y8!E~x8, y8, z,!, (8)

where the functional form of the forward-propagation ker-
nel for a cylindrically symmetric mirror is22

K~x, y; x8, y8! 5 2expF2i
p

l0

2

RM
~x82 1 y82!G

3 d ~x 2 x8!d ~ y 2 y8!, (9)

where l0 is the vacuum carrier wavelength. Note that
we have (temporarily) neglected an overall negative sign
that accounts for the Maxwell boundary condition at the
perfectly reflecting mirror surface.

If we expand the field at both reference planes using a
numerically complete set of Cartesian basis functions as
in Eq. (3), then we can compute the matrix elements of
the forward-propagation kernel in that basis as

Kmn,m8n8 5 EE
2`

`

dxdyEE
A

dx8dy8K~x, y; x8, y8!

3 umn
† ~x, y, z.!um8,n8~x8, y8, z,!

5 EE
A

dxdy expF2i
p

l0

2

RM
~x2 1 y2!G

3 umn
† ~x, y, z.!um8n8~x, y, z,!. (10)

Here the function umn
† (x, y, z.) is not generally the

conjugate transpose of umn(x, y, z.). Instead, these
basis functions represent fields propagating through the
system in the reverse direction and are obtained by
solving the Huygens–Fresnel integral Eq. (8) with
KT(x, y; x8, y8), the transpose of the forward-
propagation kernel.22–24

Although the reflection-diffraction problem is specified
completely by Eq. (10), it can introduce inconsistencies in
practical implementations of optical resonator simula-
tions. For example, when a finite number of basis func-
tions are used to represent the propagating field, the ma-
trix calculated with Eq. (10) generates two sources of
optical loss: genuine diffraction loss due to field trunca-
tion by the aperture, and power transferred to higher-
order optical modes that are ignored in the simulation.
The latter contribution is unphysical: in the limit a
→ `, when a numerically complete set of basis functions
is used, the propagation matrix must conserve energy
(i.e., must be unitary). Therefore for the purposes of our
simulations, we will explicitly allow diffraction loss due to
aperture truncation only, and we separate the effects of
aperture diffraction and reflection into two consecutive
propagation steps using the formulation

K > CA, (11)

where Ais a matrix operator representing purely trans-
missive aperture diffraction, and C is a unitary matrix op-
erator describing direct focusing by a spherical mirror at
normal incidence.

As a concrete example, we first calculate the matrix el-
ements of A in the Hermite–Gauss basis, treating the
truncation as a perturbation and describing the field both
before and after the aperture using a linear superposition
of a finite set of unperturbed Hermite–Gauss functions.
Therefore umn

† (x, y) 5 umn* (x, y), and we define the ana-
lytical integral

Amn,m8n8 5 EE
A

dxdy umn* ~x, y !um8n8~x, y !

[ dm,m8dn,n8 2 exp~2a!Imn,m8n8~a!, (12)

where a [ 2(a/w)2, and the integration is performed
over the circular aperture defined by (x2 1 y2)1/2 < a.
We specify a basis set by designating the transverse
modes for a given frequency component q in order of in-
creasing m 1 n first, and then in order of increasing n.
For example, if we use a Hermite–Gauss basis with m
1 n < 2, then for the column vector Eq [ $E00q ,
E10q , E01q , E20q , E11q , E02q%T, we obtain the matrix
I~a! 5 3
1 0 0

1

A2
a 0

1

A2
a

0 1 1 a 0 0 0 0

0 0 1 1 a 0 0 0

1

A2
a 0 0 1 1

1
2 a 1

3
4 a2 0 1

4 a~a 2 2 !

0 0 0 0 1 1 a 1
1
2 a2 0

1

A2
a 0 0 1

4 a~a 2 2 ! 0 1 1
1
2 a 1

3
4 a2

4 . (13)
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Note that nonzero elements of I(a) satisfy the relation

Imn,m8n8(a) ' O@a
1
2(m1n1m81n8)#.

Next, we ignore aperture diffraction and calculate the
matrix elements of C in the Hermite–Gauss basis.
Strictly speaking, the matrix elements of C can be calcu-
lated with Eq. (10) in the limit a → `. However, as de-
scribed above, we seek an explicitly unitary approxima-
tion for C that monotonically improves as we include
more basis functions in the field expansion. When Eq.
(10) is applied to a Hermite–Gauss basis function with
field curvature parameter RF , this parameter is trans-
formed according to the ABCD propagation law as 1/RF8
5 1/RF 2 2/RM . In the unperturbed case where RM
5 RF , the curvature parameter of the backward-
propagating basis function is therefore 2(2RF) 5 RF ,
and, using Eq. (7), we have

C > exp~igc !, (14)

where

g [
pw2

l0
S 1

RF
2

1

RM
D , (15)

cmn,m8,n8 [
2

w2 EE
2`

`

dxdy~x2 1 y2!

3 uumn~x, y !um8n8~x, y !u. (16)

As the number of Hermite–Gauss basis functions used to
represent Eq grows, exp(i g c) → C, and since c is sym-
metric, exp(i g c) is explicitly unitary. Using the generat-
ing function of the Hermite polynomials, we obtain the
matrix elements

cmn,m8n8 5 Xm,m8
2 dn,n8 1 dm,m8Xn,n8

2 , (17)

where

Xm,m8
2 [

1

2
~1 1 2m !dm,m8

1
1

2
A~m8 1 1 !~m8 1 2 !dm,m812

1
1

2
A~m 1 1 !~m 1 2 !dm8,m12 . (18)

As a straightforward test of our unitary approximation,
we can compare the separated propagator given by Eq.
(11) with the exact propagator specified by Eq. (10) for the
TEM00 Hermite–Gauss mode. An explicit calculation
with Eq. (10) yields

K00,00 5
1 2 exp@2~1 1 ig!a#

1 1 ig
. (19)

In Fig. 2, we plot the fractional error in uK00,00u accrued by
computing K 5 C A, where A is provided by Eq. (12) and
C by Eq. (14). For an incident field with a spot radius
w 5 3.64 cm and a wave-front radius of curvature RF
5 10 km at a wavelength l 5 1.0642 mm, we show rela-
tive errors for different values of the mirror’s cylindrical
substrate radius and radius of curvature as a function of
the maximum mode index N. The number of basis modes
with m 1 n < N used in the calculations of A and C is
given by 1

2 (N 1 1)(N 1 2). As we expect, the relative
error decreases significantly as the number of basis
modes increases.

2. Thermal-Focusing Operators
In an interferometric gravitational-wave detector, the test
masses (as well as any optics that form power and/or sig-
nal recycling cavities) are thick cylindrical blocks of a
transparent material, such as pure fused silica. A high-
reflectance (HR) coating is applied to the broad inner face
of the cylinder, forming a mirror; if transmission through
the mirror substrate is necessary, then an antireflecting
(AR) coating will be applied to the outer surface as well.
Under test, then, laser power may be absorbed in the
coatings and/or the mirror substrate (SS), and the corre-
sponding heat flow into the substrate will result in an in-
homogeneous temperature distribution throughout the
mirror. This temperature gradient will cause a
refractive-index gradient to form, converting the sub-
strate into a thermally generated thick lens.

In general, the propagation of the laser field through
the substrate will be described by an integral transform
equation that incorporates the effects of position-
dependent optical phase shifts caused by the thermal
load. As discussed above, by choosing a suitable set of
unperturbed basis functions (i.e., in the absence of ther-
mal and mechanical perturbations), we can convert the
integral transform equation into a scattering matrix op-
erator that redistributes energy contained in an initial
configuration of basis functions into the final set of corre-
sponding functions that emerges from the substrate. In
order to determine the elements of this matrix operator,
we must first find the temperature distribution in the
substrate due to absorption in both the coatings and the
substrate, and then we must compute the matrix ele-
ments of the longitudinal optical path-difference (OPD)
phase shift introduced by the temperature gradient.

Hello and Vinet18 have calculated both the steady-state
and transient temperature distribution throughout the
simplified mirror shown in Fig. 3 for the case where the
change in the temperature due to the absorption of optical

Fig. 2. Fractional error in uK00,00u obtained by comparing the ex-
act value given by Eq. (19) with the TEM00 element of the ap-
proximate propagator K 5 C A, where A is provided by Eq. (12)
and C by Eq. (14).
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power remains small compared with the external ambient
temperature T0 . This assumption linearizes the radia-
tive boundary conditions at the surfaces of the mirror and
allows the temperature increase due to coating and sub-
strate absorption to be calculated independently (and
then summed) for some incident power P. As shown in
Fig. 3, they treated the mirror substrate as a thick disk
spanning the cylindrical coordinates 0 < r < a and
2h/2 < z < h/2, and the coating is concentrated in an in-
finitesimally thin layer at z 5 2h/2. After an algebraic
simplification of Hello and Vinet’s steady-state results, we
find that the temperature distributions throughout the
substrate due to absorption in the substrate and coating
are, respectively,

Ts~r, z ! 5 P
asa

2

kT
(

k

pk

zk
2

3 F1 2 2tAk coshS zk

z

a D GJ0S zk

r

a D , (20)

Tc~r, z ! 5 P
aca

kT
(

k
pk

3 FAk coshS zk

z

a D 2 Bk sinhS zk

z

a D GJ0S zk

r

a D ,

(21)

where ac is the power absorption of the coating, as is the
absorption coefficient of the substrate material,

Ak 5
1

2@zk sinh~gk! 1 t cosh~gk!#
, (22a)

Bk 5
1

2@zk cosh~gk! 1 t sinh~gk!#
, (22b)

gk [ zkh/2a, t [ 4esT0
3a/kT , s is the Stefan–

Boltzmann constant, e is the total spherical emissivity of
the substrate, and kT is the thermal conductivity of the
substrate. For a 5 12.5 cm (consistent with the value
chosen for the LIGO test masses) and T0 5 300 K, we

Fig. 3. Schematic diagram of a singly coated mirror and the cor-
responding coordinate system used by Hello and Vinet.18 Both
the mirror and the incident power distribution are assumed to be
azimuthally symmetric. The total incident power P can be ab-
sorbed in the coating and/or the substrate, resulting in a total
temperature distribution T(r, z) and a corresponding thermal
lens in the substrate.
have t 5 0.277. The terms in these series are character-
ized by the roots of the equation

zJ1~z! 2 tJ0~z! 5 0, (23)

which are reasonably well approximated by the zeros of
J1(z), zk > (k 1 1/4)p for k P $0, 1, 2,...%, when t , 1.

The constants pk are the coefficients of a Dini series
expansion18 of the azimuthally symmetric incident inten-
sity distribution I(r), given by

I~r ! [ (
k

pkJ0S zk

r

a D . (24)

A straightforward calculation with Eq. (23) yields

pk 5
2zk

2

~zk
2 1 t 2!J0

2~zk!

1

a2 E
0

a

dr r J0S zk

r

a D I~r !. (25)

If we assume that the field is primarily made of the
fundamental $00% mode, then we can neglect the slight
heating arising from higher-order modes. When the in-
cident intensity describes a unit power TEM00 Gaussian
beam with spot radius w, we have I(r) 5 (2/pw2)
3 exp(22r2/w2). Furthermore, if w/a ! 1, we can ex-
tend the upper limit of integration in Eq. (25) to infinity,
thereby obtaining the analytic expression

pk 5
1

pa2

zk
2

~zk
2 1 t 2!J0

2~zk!
exp~2bk!, (26)

where bk [ 1
8 (zkw/a)2.

The z dependence of the substrate temperature distri-
bution given by Eq. (20) is typically very weak when
w/a ! 1, and the boundary conditions are radiative.18

In this case, near r 5 0 we can use the identity (kpk
5 I(0) 5 2/pw2 to obtain the approximate temperature
distribution Ts(r) 2 Ts(0) > 2(apPs/2pkT)(r/w)2. In
the thin-lens approximation, this quadratic temperature
gradient yields a weak focal length23

f 5
pw2

ashP

kT

dh/dT
, (27)

where h is the refractive index of the substrate. The ma-
terial constants for fused silica are shown in Table 1. For
typical LIGO test masses, we have w 5 4 cm, h
5 10 cm, and P 5 500 W, giving f 5 12 km, a length
only three times greater than that of a LIGO arm cavity.

The thermal load on the substrate causes a position-
dependent phase shift across any wave front propagating

Table 1. Material Constants for Fused Silica
Used in Our Simulations at l0 Ä 1.0642 mm

and T0 Ä 300 K

Constant Name Value Units

h Refractive index 1.44963
dh /dT Thermo-optic coefficient 8.7 3 1026 K21

kT Conductivity 1.38 W/m K
e Total spherical emissivity 0.90

as Bulk absorption coefficient 3.5 3 1024 m21

ss Bulk scattering coefficient 0.5 3 1024 m21
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through the mirror. Defining the longitudinal optical
path-difference (OPD) phase f as

f~r ! [
2p

l0

dh

dT
E

2h/2

h/2

dzT~r, z !, (28)

we obtain for the substrate and coating contributions

fs~r ! 5 Ps

2pa2

l0kT

dh

dT (
k

pk

zk
2

3 F1 2
2tAk

gk
sinh~gk!GJ0S zk

r

a D , (29a)

fc~r ! 5 Pc

2pa2

l0kT

dh

dT (
k

pk

zk
2Ak sinh~gk!J0S zk

r

a D ,

(29b)
where Ps [ aphP and Pc [ acP are the powers absorbed
in the substrate and coating, respectively. If the thick-
ness of the substrate is small compared with the wave-
front radius of curvature, then we can approximate the
propagator describing transmission through the substrate
as a diffraction step through the aperture followed by a
direct integration of the OPD across the aperture to de-
scribe the accumulated distortion. If we define the ‘‘edge-

to-center’’ OPD phase as Df(r) [ f(r) 2 f(0), then we
can compute the total substrate thermal distortion matrix
operator using

Smn,m8n8 5 EE
2`

`

dxdy exp@iDf~r !#

3 umn
† ~x, y !um8n8~x, y ! (30)

for both substrate and coating absorption.
As we discussed above for the wave-front–mirror cur-

vature matrix C given by Eq. (14), we seek a unitary ap-
proximation of the substrate thermal distortion matrix to
ensure that power is conserved even when a finite set of
unperturbed basis functions is used to compute the ma-
trix elements. Once again, we begin by computing the
matrix elements of the exponential arguments Dfs(r)
and Dfc(r) (scaled to unit absorbed power) as, respec-
tively,

Ik~bk! 5 3
1 0 0

0 1 2 bk 0

0 0 1 2 bk

2
1

A2
bk 0 0 1

0 0 0

2
1

A2
bk 0 0
Fs;mn,m8n8 5
2pa2

l0kT

dh

dT (
k

pk

zk
2 F1 2

t

gk
2Ak sinh~gk!G

3 exp~2bk!Ik;mn,m8n8 , (31a)

Fc;mn,m8n8 5
2pa2

l0kT

dh

dT (
k

pk

zk
2Ak sinh~gk!

3 exp~2bk!Ik;mn,m8n8 , (31b)

where we have defined the matrix integral Ik as

Ik;mn,m8n8 [ exp~bk!EE
2`

`

dxdyFJ0S zk

r

a D 2 1G
3 um8n8

†
~x, y !umn~x, y !. (32)

Since the integrand is zero at r 5 Ax2 1 y2 5 0, our defi-
nition of Df(r) allows us to explicitly ignore any phase
shift accumulated due to the peak thermal change in the
substrate refractive index, and instead we include only
the contribution to the wave-front distortion arising from
the shape of the temperature distribution. Using the
same example Hermite–Gauss basis described in Subsec-
tion 2.B.1, for m 1 n < 2 and a given value of k, we ob-
tain the square matrix elements

Note that nonzero elements of Ik(bk) satisfy the relation

Ik;mn,m8n8(bk) ' O@bk

1
2(m1n1m81n8)

#.
Collecting results, we can compute the net effective

substrate OPD matrix operator in our unitary approxima-
tion as

S 5 exp$i@PsFs 1 ~Ph 1 Pa!Fc#%, (34)

where Ps , Ph , and Pa are the total TEM00 optical powers
absorbed in the substrate, HR coating, and AR coating,
respectively. The power distribution throughout the mir-
ror volume is shown schematically in Fig. 4 for a dual-
coated cylindrical mirror with substrate thickness h. A
laser field F1 is incident on the HR coating (the ‘‘front’’ of
the mirror), and another field F2 is incident on the AR
coating (the ‘‘back’’ of the mirror). Since we have as-
sumed that the field primarily consists of the fundamen-

2
1

A2
bk 0 2

1

A2
bk

0 0 0

0 0 0

2bk 1
3
4 bk

2 0 1
4 bk

2

0 1 2 2bk 1
1
2 bk

2 0

1
4 bk

2 0 1 2 2bk 1
3
4 bk

2

4 . (33)

2
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tal $00% mode, then the total power absorbed in the coat-
ings and substrate depend only on the field amplitude
expansion coefficients F00q , as listed in Table 2. Here ahr
and aar are the dimensionless fractional power absorp-
tions of the HR and AR coatings, respectively, and as is
the power absorption coefficient of the substrate, with
units of inverse length. The reflected field E2 is the su-
perposition of the prompt reflection of F1 and the residual
of F2 that has been transmitted through the HR coating.

3. Transfer Matrix
We can extend our analysis of the reflection and transmis-
sion processes and build a general transfer matrix for
fields incident on the mirror from either direction. First,
we choose the laser-industry standard conventions for the
phases of the amplitude reflection and transmission coef-
ficients for a quarter-wave dielectric stack. Therefore
the Maxwell boundary conditions for the HR coating gen-
erate the amplitude coefficients 2r for reflection and i t
for transmission, regardless of propagation direction.
Losses in the HR coating due to absorption and scattering
are included implicitly when r2 1 t2 , 1. However, we
must explicitly account for losses due to transmission
through the substrate and AR coating using the ampli-
tude coefficient

ts 5 exp@2~as 1 ss!h/2#A1 2 ~aar 1 sar!, (35)

where ss is the scattering loss per unit length in the sub-
strate, and sar is the scattering loss in the AR coating.

The propagator for reflection from the vacuum side of
the HR is given by Eq. (9), and the resulting perturbation
matrix for a mismatch between the radius of curvature of

Fig. 4. Schematic diagram of field distributions in a mirror of
thickness h, consisting of a substrate (SS) with applied high-
reflectance (HR) and antireflecting (AR) coatings.

Table 2. Total Absorbed TEM00 Powers for Each
of the Three Regions Shown in Fig. 4, Summed
Over the Lowest-Order Transverse Modes of all

Active Sidebands

Region Absorbed Powera

SS Ps 5 ash
1
2 (q(uE00q

1 u2 1 uF00q
2 u2)

HR Ph 5 ahr
1
2 (q(uF00q

1 u2 1 uF00q
2 u2)

AR Pa 5 aar
1
2 (q(uE00q

1 u2 1 uF00q
2 u2)

a The factors of
1
2 arise from our normalization convention for the laser

electric field.
the mirror and the wave front is given by Eq. (14) as
C(g) [ C2. Since the propagator for reflection from the
substrate side of the HR coating is also given by Eq. (9)
with 22/RM → 2n/RM ,23 where n is the refractive index
of the substrate, the corresponding perturbation matrix is
C(2ng) [ C1. Similarly, the propagator for transmis-
sion through the HR from the substrate to the vacuum is
given by Eq. (14) with 22/RM → (n 2 1)/RM ,23 so the
transmission curvature mismatch matrix operator is
C@(n 2 1)g/2# 5 (C2C1)1/2.

In Subsections 2.D.2 and 3.B, we will adjust the micro-
scopic positions of some of the mirrors to ensure that the
perturbed interferometers maintain the appropriate reso-
nant phase conditions as the system evolves. If the mir-
ror in Fig. 4 is moved in the positive ẑ direction (i.e., to-
ward the right in the diagram) by the microdisplacement
Dz & l, then reflection from the ‘‘front’’ of the mirror in-
troduces a relative phase exp(1i2kDz), while reflection
from the ‘‘back’’ of the mirror requires a phase adjustment
of exp(2i2kDz).

Collecting these results, the final mirror transfer ma-
trix depicted in Fig. 5 is

FE2

E1G 5 F T2 R2

R1 T1G FF2

F1G , (36)

where the transmission operators are

T2 5 itts~C2C1!1/2SA, (37a)

T1 5 ittsS~C1C2!1/2A, (37b)

and the reflection operators are

R2 5 2r exp~1i2kDz !C2A, (38a)

R1 5 2rts
2 exp~2i2kDz !SC1SA. (38b)

In the lossless case where r2 1 t2 5 ts
2 5 1 and A is the

identity matrix, the explicit unitarity of the C1, C2, and
S matrix operators guarantees that uE1u2 1 uE2u2

5 uF1u2 1 uF2u2.

Fig. 5. Schematic diagram of the generalized mirror transfer
matrix given by Eq. (36). The HR-coated surface of the mirror is
on the left. The labels z, and z. denote the input and output
reference planes, respectively, near the HR surface, while z, and
z. are the input and output reference planes near the AR sur-
face.
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C. Beam Splitter

1. Aperture-Diffraction and Thermal-Focusing
Operators
The analysis of the aperture-diffraction and thermal-
focusing operators for the case of a 45° beam splitter is
similar to that of a mirror. However, even though the
beam splitter has the same cylindrically symmetric sub-
strate as the mirror shown in Fig. 3, the nonnormal angle
of incidence will require the elements of the perturbative
matrix operators to be computed numerically. We will
assume here that the HR-coated surface of the beam split-
ter is flat, allowing us to ignore both curvature mismatch
and astigmatism when we build the transfer matrix in
Subsection 2.C.2.

The aperture-diffraction operator for reflection from the
HR-coated surface of the beam splitter is given by

Amn,m8n8 5 EE
E

dxdy umn
† ~x, y !um8n8~x, y !, (39)

where E represents an elliptical aperture with semimajor
( y) axis a and semiminor (x) axis a/A2. Strictly speak-
ing, the diffraction operator for transmission through the
substrate is more complicated than Eq. (39) because of re-
fraction at each vacuum–dielectric interface, particularly
since the effective clear aperture (in the horizontal plane)
after propagation through the substrate has been reduced
by the distance h/2h, or ;1.4 cm for LIGO. In principle,
we can construct separate operators for reflective and
transmissive aperture diffraction, but in practice we have
found that the resulting effect on the recycled-power en-
hancement of the standard PRFPMI configuration shown
in Fig. 1 was negligible. Hence in our simulations, we
have made the simplifying approximation that Eq. (39)
can be used to represent aperture-diffraction effects for
both reflection and transmission.

The distribution of absorbed power within the beam-
splitter volume is illustrated in Fig. 6, where we have in-
troduced the primary propagation paths labeled parallel
(i) and perpendicular (') relative to the propagation of the
input laser field in Fig. 1. Following the conventions of
Subsection 2.B.2 as closely as possible, we then label the
input fields incident on the front (HR-coated) side of the
mirror with sign(k̂ – ẑ) . 0 as F1i and F1', and those in-
cident on the back (AR-coated) side of the mirror, with
sign(k̂ – ẑ) , 0 as F2i and F2'. Together with the four
corresponding output fields shown in Fig. 6, these fields
generate five distinct optical power absorption regions.
The total TEM00 optical power absorbed in each of these
regions is listed in Table 3, where h8 [ h/(1 2 1/2h2)1/2

is the distance traveled through the substrate by the re-
fracted beams.

Diffusion of heat from each of the optical absorption re-
gions contributes to the total OPD distortion for both the
parallel and perpendicular propagation paths. Following
the conventions we established in Subsection 2.B.2 and
Eqs. (31), for the parallel propagation path shown in Fig.
6, we denote the substrate OPD phase operators corre-
sponding to the five absorption regions SSi, SS', HR, ARi,
and AR' as Fs

i , Fs
' , Fc8 , Fc

i , and Fc
' , respectively.

Since the perpendicular and parallel propagation paths
are symmetric under reflection in the x –z plane about the
z axis, the same set of operators can be used to represent
the substrate OPD distortion for perpendicular propaga-
tion, but in the order Fs

' , Fs
i , Fc8 , Fc

' , and Fc
i . Hence

in a particular basis, the net substrate thermal OPD ma-
trix operators for the two propagation paths can be writ-
ten with our unitary approximation as

S i 5 exp$i@Ps
i Fs

i
1 Ps

'Fs
' 1 PhFc8 1 Pa

i Fc
i

1 Pa
'Fc

'#%,

(40a)

S' 5 exp$i@Ps
i Fs

' 1 Ps
'Fs

i
1 PhFc8 1 Pa

i Fc
' 1 Pa

'Fc
i
#%.

(40b)

For the purposes of the initial LIGO simulations dis-
cussed in Subsection 3E, we first used finite-element soft-
ware to compute the temperature distribution every-
where in the beam-splitter substrate due to absorption of
1 W of TEM00 optical power (choosing the initial LIGO
spot size at the beam splitter) in each of the five regions
shown in Fig. 6. Following the same basic approach as
that of Subsection 2.B.2, we then computed the matrix el-
ements of the five parallel OPD operators in Eq. (40) us-
ing a Hermite–Gauss basis having the same spot size. In
our simulation runs, we simply scaled each matrix by the
appropriate absorbed power and then computed S i and S'

by matrix exponentiation.

Fig. 6. Interaction of the two primary propagation paths, par-
allel (i) and perpendicular ('), with the five optical absorption re-
gions that cause thermal focusing in the beam-splitter substrate:
SSi, SS', HR, ARi, and AR'.

Table 3. Total Absorbed TEM00 Powers for Each of
the Five Absorption Regions Shown in Fig. 6,

Summed Over the Lowest-Order Transverse Modes
of all Active Sidebandsa

Region Absorbed Power

SSi
Ps

i
5 ash8

1
2 (q(uE00q

1i u2 1 uF00q
2i u2)

SS' Ps
' 5 ash8

1
2 (q(uE00q

1' u2 1 uF00q
2' u2)

HR Ph 5 ahr
1
2 (q(uF00q

1i u2 1 uF00q
2i u2

1 uF00q
1' u2 1 uF00q

2' u2)
ARi

Pa
i

5 aar
1
2 (q(uE00q

1i u2 1 uF00q
2i u2)

AR' Pa
' 5 aar

1
2 (q(uE00q

1' u2 1 uF00q
2' u2)

a The factors of
1
2 arise from our normalization convention for the laser

electric field.
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2. Transfer Matrix
As in the case of the mirror described in Subsection 2.B.3,
we can construct a generalized transfer matrix for the
beam splitter that includes the effects of aperturing, ther-
mal focusing, and longitudinal microdisplacement. Once
again, we adopt the industry-standard convention for the
phases of the quarter-wave amplitude reflection and
transmission coefficients of the HR coating, and we apply
the substrate/AR amplitude transmission coefficient
given by Eq. (35) with h → h8. However, as shown in
Subsection 2.E.2, the definition of the beam-splitter posi-
tion is more subtle than that of the mirror: It consists of
a static contribution z that represents the location chosen
for the beam splitter when used in cold, unperturbed sys-
tems, and a dynamic contribution Dz that is used in
heated interferometers to maintain a given intracavity
phase condition. Hence if the beam splitter in Fig. 6 is
displaced in the positive ẑ direction (i.e., away from the
HR coating along the beam-splitter axis of cylindrical
symmetry) by the total displacement z 1 Dz, then reflec-
tion from the ‘‘front’’ of the beam splitter introduces an
additional relative phase exp@1i2A2k(z 1 Dz)#, while re-
flection from the ‘‘back’’ of the beam splitter requires a
phase adjustment exp@2i2A2k(z 1 Dz)#.

Collecting these results, the final beam-splitter trans-
fer matrix depicted in Fig. 7 is

F E2i

E1'

E1i

E2'

G 5 F T2i R2i 0 0

R1' T1' 0 0

0 0 T1i R1i

0 0 R2' T2'

GF F2i

F1'

F1i

F2'

G , (41)

where, in the absence of curvature mismatch, the trans-
mission operators are

T2i 5 T1i 5 itts8S
iA, (42a)

T2' 5 T1' 5 itts8S
'A, (42b)

and the reflection operators are

R2i 5 R2' 5 2r exp@1iA2k~z 1 Dz !#A, (43a)

R1i 5 2rts8
2 exp@2iA2k~z 1 Dz !#S iS'A, (43b)

R1' 5 2rts8
2 exp@2iA2k~z 1 Dz !#S'S iA. (43c)

In the lossless case where r2 1 t2 5 ts8
2 5 1 and A 5 1,

the explicit unitarity of the S i and S' matrix operators
guarantees that uE1'u2 1 uE2iu2 5 uF1'u2 1 uF2iu2 and
uE1iu2 1 uE2'u2 5 uF1iu2 1 uF2'u2.

D. Fabry–Perot Interferometers
The propagation schematic diagram of a Fabry–Perot in-
terferometer (FPI) is shown in Fig. 8. The front (HR) in-
put and output ports of mirror M1 and M3 are coupled
through a propagation distance L13 . We can simplify
later calculations of the optical performance of a power-
recycled gravitational-wave interferometer if we first de-
termine a transfer matrix for the FPI and then establish a
procedure maintaining an optimum level of intracavity
field amplitude enhancement in the presence of system-
atic perturbations. Although we develop the FPI trans-
fer matrix in a basis-independent fashion and postpone
the discussion of the choice of an unperturbed basis set
until we calculate steady-state fields in Subsection 3.C,
we note that we will use the unperturbed Hermite–Gauss
eigenmodes of one of the Fabry–Perot interferometers in
Fig. 1 to develop a basis set for the entire gravitational-
wave detector.

1. Transfer Matrix
Consider the schematic representation of the enhance-
ment, reflection, and transmission operators of the
Fabry–Perot interferometer shown in Fig. 8. If we ex-
press these operators using the transfer matrices of mir-

Fig. 7. Schematic diagram of the generalized beam-splitter
transfer matrix given by Eq. (41). The HR surface of the mirror
is on the upper left.

Fig. 8. Schematic diagram of the enhancement, reflection, and
transmission operators of a Fabry–Perot interferometer, defined
by Eq. (50), Eq. (55), and Eq. (56), respectively.
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rors M1 and M3 , described in Subsection 2.B.3, then the
self-consistent forward-propagation steps between the
plane of incidence of M1 at z1

, and the plane of incidence
of M3 at z3

. can be represented as

F1q
2 5 exp~iDvqt13!G13~R3

2F3q
1 1 T3

2Fq
2!, (44a)

F3q
1 5 exp~iDvqt31!G31~R1

2F1q
2 1 T1

2Fq
1!, (44b)

where Fq
1 is the amplitude of the external sideband field q

incident on M1 , Fq
2 is the amplitude of the external side-

band field q incident on M3 , F1q
2 is the amplitude of fre-

quency component q incident on reference plane z1
, , and

F3q
1 is the corresponding field incident on reference plane

z3
. . Here G31 is the Gouy operator describing the for-

ward propagation step from z1
. to z3

, , while G13 is the cor-
responding operator describing propagation from z3

. to
z1

, . (In a power-orthonormal basis, the matrices repre-
senting these operators are identical.) If the length of the
vacuum separating M1 from M3 is L31 , then the single-
pass propagation time is t31 [ L31 /c 5 t13 .

Using the concatenated column vectors @E1q
2 E3q

2 #T and
@Fq

2 Fq
1#T, we can construct a system of sparse matrix

equations that can be efficiently solved numerically by
Gaussian elimination:

@1 2 Ĝ~Dvq!R̂2#FF1q
2

F3q
1 G 5 Ĝ~Dvq!T̂2FFq

2

Fq
1G , (45)

where

T̂2 5 FT3
2 0

0 T1
2G , R̂2 5 F 0 R3

2

R1
2 0 G , (46)

Ĝ~Dv! 5 Fexp~iDvt13!G13 0

0 exp~iDvt31!G31
G . (47)

Alternatively, for a purely analytic calculation, we can de-
fine the global enhancement operator

Ĥ~Dv! 5 @1 2 Ĝ~Dv!R̂2#21Ĝ~Dv!T̂2 (48)

and then solve Eq. (45) analytically to obtain

FF1q
2

F3q
1 G 5 FH1

2~Dvq! H1
1~Dvq!

H3
2~Dvq! H3

1~Dvq!
G FFq

2

Fq
1G , (49)

where the operators representing the enhancements at
each of the reference planes in Fig. 8 are given by

H1
2~Dv! 5 @1 2 exp~i2Dvt13!G13R3

2G31R1
2#21

3 exp~iDvt13!G13T3
2 , (50a)

H1
1~Dv! 5 @1 2 exp~i2Dvt13!G13R3

2G31R1
2#21

3 exp~i2Dvt13!G13R3
2G31T1

2 , (50b)

H3
2~Dv! 5 @1 2 exp~i2Dvt31!G31R1

2G13R3
2#21

3 exp~i2Dvt31!G31R1
2G13T3

2 , (50c)

H3
1~Dv! 5 @1 2 exp~i2Dvt31!G31R1

2G13R3
2#21

3 exp~iDvt31!G31T1
2 . (50d)

From Fig. 8, we see that each of the output fields Eq
2

and Eq
1 can be expressed as the sum of a prompt reflection
of the corresponding input field and an enhanced intra-
cavity field transmitted through the adjacent mirror, giv-
ing

Eq
2 5 T1

1F1q
2 1 R1

1Fq
1 , (51a)

Eq
1 5 T3

1F3q
1 1 R3

1Fq
2 , (51b)

or, from Eq. (48) and Eq. (49),

FEq
2

Eq
1G 5 @R̂1 1 T̂1Ĥ~Dvq!#FFq

2

Fq
1G , (52)

where

T̂1 5 FT1
1 0

0 T3
1G , R̂1 5 F 0 R1

1

R3
1 0 G . (53)

We can now construct an explicit transfer matrix similar
to Eq. (36) for the FPI as a monolithic optical element.
With Fig. 5 as a guide, Eq. (52) gives

FEq
2

Eq
1G 5 F TFPI

2 ~Dvq! RFPI
2 ~Dvq!

RFPI
1 ~Dvq! TFPI

1 ~Dvq!
G FFq

2

Fq
1G , (54)

where the transmission operators are

TFPI
2 ~Dv! 5 T1

1H1
2~Dv!, (55a)

TFPI
1 ~Dv! 5 T3

1H3
1~Dv!, (55b)

and the reflection operators are

RFPI
2 ~Dv! 5 R1

1 1 T1
1H1

1~Dv!, (56a)

RFPI
1 ~Dv! 5 R3

1 1 T3
1H3

2~Dv!. (56b)

2. Idealized Simulation of Servo-Controlled Resonator
Length Locking
Suppose that the FPI has been initialized with a particu-
lar set of configuration parameters for mirrors M1 and
M3 , the initial thermal loads are negligible, and the ini-
tial microdisplacements of both mirrors are set to zero.
At some later time, a perturbation is introduced, such as
a different curvature for M1 , that alters the resonance
condition of the cavity. We assume that a biorthonormal
set of unperturbed basis functions umn(r) has been cho-
sen to represent both the intracavity and extracavity
transverse laser fields before any perturbations, and we
wish to compute the corresponding perturbed transfer
mirror matrix given by Eq. (36) in that unperturbed basis.

In any experiment that uses an FPI, the fields emerg-
ing from the resonator will be monitored and the cavity
length will be adjusted to maintain optimum enhance-
ment. However, rather than simulate a servo-
mechanical control loop, we choose to compute a microdis-
placement Dz1 for M1 directly from a numerical
determination of the net round-trip phase accumulated by
the lowest-loss carrier eigenmode of the resonator. Be-
ginning and ending at the reference plane z1

, , the per-
turbed round-trip propagator at the carrier frequency for
the FPI shown in Fig. 8 is

KFPI~Dz1! 5 exp~2i2kDz1!G13R3
2G31R1

2 , (57)

where we have chosen to extract from Eq. (38a) the ex-
plicit phase offset arising from a nonzero value of Dz1 .
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We can then compute the spectrum of eigenvalues of
KFPI(0) and select the eigenvalue l0 [ ul0uexp(if0) with
the largest magnitude (i.e., the smallest round-trip loss).
Clearly, the corresponding eigenvector E0 is also an eigen-
vector of the matrix operator KFPI(Dz1), with the eigen-
value l1 5 l0 exp(2i2kDz1). Hence if we choose

Dz1 5
f0

2k
, (58)

then the net round-trip phase accumulated by E0 will be
zero, and that mode will satisfy the resonance condition.
In our simulations, we maintain a record of the most re-
cently chosen lowest-loss eigenvector, and in the case of
degeneracy we choose the eigenmode having the largest
value of the inner product with the previous eigenvector.

Suppose that we have followed this procedure and com-
puted the eigenvector E0 of the matrix operator
KFPI(f0/2k), representing a maximally resonant field am-
plitude at reference plane z1

, in Fig. 8. We can mode
match this field by choosing input fields that optimally
couple to E0 through the global enhancement operator
Ĥ(0). For example, if we solve the matrix equation
E0 5 H1

1(0)F0
1 for F0

1 , where H1
1(0) is given by Eq.

(50b), we obtain the intuitively self-consistent result

F0
1 5 S 1 2 ul0u

l0*
D ~T1

2!21R1
2E0 . (59)

A similar mode-matching condition for the back reference
plane and incident field can be found by the same proce-
dure.

E. Michelson Interferometer
The propagation schematic of a generalized Michelson in-
terferometer (MI) is shown in Fig. 9. The back (AR) par-
allel input and output ports are coupled to either a mirror
or FPI MI through a propagation distance L16 , and the
front (HR) perpendicular ports are coupled to either a
mirror or FPI MII through a propagation distance L26 .
We can simplify later calculations of the optical perfor-
mance of a power-recycled gravitational-wave interferom-
eter if we first determine a transfer matrix for the MI and
then establish a procedure for satisfying the dark-port
condition in the presence of perturbations. As in Subsec-
tion 2.D, we develop the MI transfer matrix in a basis-
independent fashion and postpone the discussion of the
choice of an unperturbed basis set until we calculate
steady-state fields in Subsection 3.C.

1. Transfer Matrix
By comparing Fig. 7 and Fig. 9, we can connect the MI in-
put and output fields of frequency component q with the
front parallel and back perpendicular fields of the beam
splitter using the associations

E2i → Eq
2 , F2' → Fq

1 ,

E1' → Eq
1 , F1i → Eq

2 .

As shown in Fig. 9, the back parallel fields are coupled
through reflection from optical component MI , and the
front perpendicular fields are coupled through reflection
from MII . Therefore for frequency component q, we
have

Fq
2i

5 K616~Dvq!Eq
1i , (60a)

Fq
1' 5 K626~Dvq!Eq

2' , (60b)

where

K616~Dv! [ exp~i2Dvt61!G61RI
2~Dv!G16 , (61a)

K626~Dv! [ exp~i2Dvt62!G62RII
2~Dv!G26 . (61b)

In Eq. (61a), G16 is the Gouy operator describing the
forward-propagation step from the back parallel output
port of the beam splitter M6 to the input port of MI ,
while G61 is the corresponding operator describing propa-
gation from the output port of MI to the back parallel in-
put port of M6 . If the length of the vacuum separating
M6 from MI is L16 , then the single-pass propagation
time is t16 [ L16 /c 5 t61 . In Eq. (61b), there is an
equivalent set of propagation operators and times, with
1 → 2 and I → II. The internal-reflection operators
RI

2(Dv) and RII
2(Dv) may each represent either the re-

flection operator of a mirror, given by Eq. (38a), or that of
a Fabry–Perot interferometer, given by Eq. (56a).

By substituting Eq. (60) into Eq. (41), we can immedi-
ately construct a transfer matrix similar to Eq. (36) for
the MI as a monolithic optical element. Using Fig. 5 as a
guide, we find

Fig. 9. Schematic diagram of the reflection and transmission
operators of a Michelson interferometer, defined by Eq. (63).
Note that the internal reflection operators RI

2(Dvq) and
RII

2(Dvq) may each represent either the reflection operator of a
mirror, given by Eq. (38a), or that of a Fabry–Perot interferom-
eter, given by Eq. (56a). The labels z, and z. denote the input
and output reference planes, respectively, near the HR surface of
the beam splitter, while z, and z. are the input and output ref-
erence planes near the beam-splitter AR surface.
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FEq
2

Eq
1G 5 F TMI

2 ~Dvq! RMI
2 ~Dvq!

RMI
1 ~Dvq! TMI

1 ~Dvq!
G FFq

2

Fq
1G , (62)

where the individual reflection and transmission opera-
tors are defined by the matrix product

F TMI
2 ~Dv! RMI

2 ~Dv!

RMI
1 ~Dv! TMI

1 ~Dv!
G

5 F T6
2i R6

2i

R6
1' T6

1'G FK616~Dv! 0

0 K626~Dv!
G

3 F T6
1i R6

1i

R6
2' R6

2'G F0 1

1 0G . (63)

2. Idealized Simulation of the Dark-Port Condition
Interferometric gravitational-wave Michelson interferom-
eters typically operate with the beam splitter positioned
so that the back perpendicular (antisymmetric) output
port generates a dark fringe. In the model MI developed
in the previous subsection, we can adjust the static posi-
tion z6 of the beam splitter to ensure that an unper-
turbed, mode-matched fundamental field (i.e., $m, n, q%
5 $0, 0, 0%) incident on the beam splitter’s front parallel
input port is canceled at the back perpendicular output
port. Given our conventions for the phases of the ampli-
tude reflection and transmission coefficients of a high-
reflectance coating, we choose z6 5 2p/2A2k22 and ob-
tain from Eq. (43)

R6
2i

5 R6
2' 5 ir6 exp~1iA2kDz6!A6 , (64a)

R6
1i

5 2ir6ts8
2 exp~2iA2kDz6!S6

i S6
'A6 , (64b)

R6
1' 5 2ir6ts8

2exp~2iA2kDz6!S6
'S6

i A6 . (64c)

If a compensation plate is placed in the vacuum between
the beam splitter and MII , then (depending upon its ori-
entation angle) it can be represented as either a mirror or
a beam-splitter substrate with two antireflecting coatings
and no curvature, and the corresponding operator can be
inserted into the perpendicular propagator K626(Dv)
given by Eq. (61b).

Suppose that the MI has been initialized with a par-
ticular set of configuration parameters, and in the ab-
sence of a thermal lens in any substrate, the dynamic mi-
crodisplacements of the beam splitter and the mirrors are
set to zero. If the static beam-splitter position has been
set to satisfy the dark-port condition for q 5 0, then an
unperturbed TEM00 field incident on the front parallel
port produces a vanishingly small output at the back per-
pendicular port. Insofar as it is possible, we wish to de-
velop an algorithm that maintains this dark-port condi-
tion when the system has been perturbed.

Consider an arbitrary field F0
1 incident on the front in-

put port of the MI. At the back output port, the trans-
mitted field can be found by simplifying Eq. (62) for
q 5 0, giving

E0
1 5 @D1~Dz6! 1 D2~Dz6!# F0

1 , (65)
where we choose to extract from Eq. (64) the explicit
phase offset arising from a nonzero value of Dz6 , and
write

D1~Dz6! 5 exp~1iA2kDz6!R6
1'K616~0 !T6

1i , (66a)

D2~Dz6! 5 exp~2iA2kDz6!T6
1'K626~0 !R6

2' . (66b)

The corresponding power measured by a square-law de-
tector at the dark port is therefore (within an additive
constant)

P0
1~Dz6! 5

1

2
E0

1†E0
1

5
1

2
F0

1†D1
†~Dz6!D2~Dz6!F0 1 c.c.

5 uF0
1†D1

†~0 !D2~0 !F0u cos~2A2kDz6 2 f !,

(67)

where f is the phase angle of 2F0
1†D1

†(0)D2(0)F0
1 . In

order to minimize P0
1(Dz6), we require that the condition

] P0
1(Dz6)/]Dz6 5 0 be satisfied, or

Dz6 5
f

2A2k
. (68)

We will incorporate this procedure into a general algo-
rithm for simulating a servo-controlled resonator length-
locking system for an entire gravitational-wave interfer-
ometer in Subsection 3.B.

3. POWER-RECYCLED FABRY–PEROT
MICHELSON INTERFEROMETER
In previous sections, we have constructed the transfer
matrices of the components needed to build a functionally
complete description of a power-recycled Fabry–Perot
Michelson interferometer (PRFPMI). The PRFPMI
propagation schematic shown in Fig. 10 is a simplified
form of the FPI schematic displayed in Fig. 8 and will al-
low us to determine the reduced transfer matrix with a
minimum of calculation. In this case, the mirror M1 is
replaced by the power-recycling mirror M5 , and the mir-
ror M3 is replaced by the Michelson interferometer MMI .
After determining the corresponding enhancement, re-
flection, and transmission operators of the PRFPMI, we
develop a simulation of an idealized servo-controlled
length-locking system that incorporates the dark-port
condition algorithm described in Subsection 2.E.2. We
then demonstrate the determination of a set of unper-

Fig. 10. Schematic diagram of the enhancement, reflection, and
transmission operators of a power-recycled Fabry–Perot Michel-
son interferometer, defined by Eq. (70) and Eq. (72), respectively.
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turbed basis functions that can be used to describe the
electromagnetic intracavity and extracavity fields, and we
develop a numerical algorithm for the computation of the
steady-state fields under the influence of both geometric
and thermal perturbations. After a detailed comparison
of the predictions of this model with those of a fast-
Fourier-transform code set in two important special cases,
we evaluate the optical performance of the baseline LIGO
design.

A. Transfer Matrix
Consider the schematic representation of the enhance-
ment, reflection, and transmission operators of the inter-
ferometer shown in Fig. 10. If we express these opera-
tors using the transfer matrices of M1 and MMI ,
respectively described in Subsections 2.B.3 and 2.E.1,
then the intracavity field enhancements can be repre-
sented as

F5q
2 5 H5

1~Dvq!Fq
1 , (69a)

F6q
1 5 H6

1~Dvq!Fq
1 , (69b)

where Fq
1 is the amplitude of the external sideband field q

incident on M5 , F5q
2 is the amplitude of frequency com-

ponent q incident on reference plane z5
, , and F6q

1 is the
corresponding field incident on reference plane z6

, . By
comparison with Eq. (44), the enhancement operators are

H5
1~Dv! 5 @1 2 exp~i2Dvt56!G56RMI

2 ~Dv!G65R5
2#21

3 exp~i2Dvt56!G56RMI
2 ~Dv!G65T5

2 , (70a)

H6
1~Dv! 5 @1 2 exp~i2Dvt65!G65R5

2G56RMI
2 ~Dv!#21

3 exp~iDvt65!G65T5
2 , (70b)

where G65 is the Gouy operator describing the forward
propagation step from z5

. to z6
, , and G56 is the corre-

sponding operator describing propagation from z6
. to z5

, .
If the length of the vacuum separating M5 from MMI
is L65 , then the single-pass propagation time is
t65 [ L65 /c 5 t56 . The front transmission and reflec-
tion operators of the power-recycling mirror, T5

2 and R5
2 ,

are given by Eq. (37a) and Eq. (38a), respectively. The
front reflection operator of the MI, RMI

2 (Dv), is given by
the appropriate element of Eq. (63).

Given the PRFPMI schematic shown in Fig. 10 and the
enhancement operators H5

1(Dv) and H6
1(Dv), we obtain

the output fields Eq
2 and Eq

1 as

Eq
2 5 RIFO

2 ~Dvq!Fq
1 , (71a)

Eq
1 5 TIFO

1 ~Dvq!Fq
1 , (71b)

where the transmission and reflection operators are

TIFO
1 ~Dv! 5 TMI

1 ~Dv!H6
1~Dv!, (72a)

RIFO
2 ~Dv! 5 R5

1 1 T5
1H5

1~Dv!. (72b)

B. Idealized Simulation of Servo-Controlled Resonator
Length Locking
Although the transfer-matrix schematics of the FPI and
the PRFPMI, shown in Fig. 8 and Fig. 10, respectively,
are similar, the resonant structure of the MI and the
dark-port condition significantly complicate simulations
of an idealized resonator length-locking system. Clearly,
we need to adjust the position of the power recycling mir-
ror M5 to maintain a ‘‘round-trip’’ resonance condition,
but the round trip must include both resonances in the
Michelson arms and reflection from a beam splitter that
has been infinitesimally displaced to force compliance
with the Michelson dark-port condition. In fact, we
again choose to compute a microdisplacement Dz5 for M5
directly from a numerical determination of the net round-
trip phase accumulated by the lowest-loss carrier eigen-
mode of the entire resonator. Beginning and ending at
the reference plane z5

, , the perturbed round-trip propa-
gator at the carrier frequency for the PRFPMI shown in
Fig. 10 is

KIFO~Dz5 , Dz6! 5 exp~2i2kDz5!G56@T6
2iK616~0 !T6

1i

1 exp~2i2A2kDz6!R6
2iK626~0 !R6

2'#

3 G65R5
2 , (73)

where we have chosen to extract from Eq. (38a) and Eq.
(64a) the explicit phase offsets arising from nonzero val-
ues of Dz5 and Dz6 , respectively.

A close examination of Eq. (73) reveals that we can
separate the idealized servo-locking algorithm into three
consecutive stages, each with its own optimization pro-
cess:

1. We follow the procedure described in Subsection 2.
D.2 to adjust individually the positions of M1 and
M2 to maximize the round-trip enhancement for
the lowest-loss carrier eigenmode of each FPI.

2. We select an initial value for Dz6 , and then com-
pute the carrier eigenvalue spectrum of
KIFO(0, Dz6) to find both the eigenvalue l0 with the
largest magnitude and the corresponding lowest-
loss eigenvector E0 . We set the Michelson input
field F0

15 G65 R5
2 E0 in Eq. (67), and then use Eq.

(68) and the discussion in Subsection 2.E.2 to com-
pute the new beam-splitter position Dz68 that satis-
fies the dark-port condition for E0 . Since E0 is
generally not an eigenvector of KIFO(0, Dz68), we it-
erate this step to determine an eigenvector E08 and
a beam-splitter displacement Dz68 such that succes-
sive values of the largest-magnitude eigenvalue
ul08u differ by no more than a suitably small conver-
gence threshold (typically 10212 in our simula-
tions).

3. As in the case of the FPI discussed in Subsection
2.D.2, the eigenvector E08 is also an eigenvector of
the matrix operator KIFO(Dz5 , Dz68), with the ei-
genvalue l5 5 ul08uexp@i(f08 2 2kDz5)#. Hence if we
choose

Dz5 5
f08

2k
, (74)

then the net round-trip phase accumulated by E08
will be zero, and that mode will satisfy the reso-
nance condition.

As in the case of the FPI, in our simulations we maintain
a record of the most recently chosen lowest-loss eigenvec-
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tor, and in the case of degeneracy we choose the eigen-
mode having the largest value of the inner product with
the previous eigenvector.

Suppose that we have followed this procedure and com-
puted the eigenvector E08 of the matrix operator
KIFO(f08/2k, Dz68), representing a maximally resonant
field amplitude at reference plane z5

, in Fig. 10. We can
mode match this field by choosing an input field that op-
timally couples to E0 through the enhancement operator
given by Eq. (70a). If we solve the matrix equation
E0 5 H5

1(0) F0
1 for F0

1 , we obtain

F0
1 5 S 1 2 ul0u

l0*
D ~T5

2!21R5
2E0 , (75)

in agreement with Eq. (59).

C. Computation of Steady-State Fields
In previous subsections, we have been largely uncon-
cerned with the basis chosen to represent the operators
that comprise the transfer matrices of the optical ele-
ments of the gravitational-wave interferometer. Instead,
we have focused on the details of specifying the operator
algebra needed to describe the physics of mirror pertur-
bations. In this subsection, we intend to define a compu-
tational algorithm that will allow us to determine the
self-consistent steady-state fields everywhere in a realis-
tic model of a thermally loaded interferometer. We begin
by describing a procedure to define an unperturbed trans-
verse spatial basis that can be used to represent all int-
racavity and extracavity electromagnetic fields, and then
we specify the initialization process we have used to pre-
pare the computational model for perturbations. Finally,
we present the simple iterative steady-state solution algo-
rithm we have used to obtain convergence from the com-
plete set of nonlinear coupled propagation equations de-
scribing the PRFPMI intracavity fields.

In the Michelson interferometer, the beam splitter
couples two optical systems (each consisting of a vacuum
region followed by either a mirror or a Fabry–Perot inter-
ferometer) that may have significantly different mode-
matching requirements relative to some common refer-
ence plane. In principle, the determination of a set of
eigenmodes that is common to both optical systems is a
tedious numerical exercise, particularly in the context of
the power-recycling scheme shown in Fig. 1. However, in
practice, our simulations do not require the identification
of an ab initio set of common eigenmodes. Rather, we
seek a collection of self-consistent unperturbed basis func-
tions capable of accurately representing the transverse
spatial features of the laser field anywhere in the
gravitational-wave interferometer. As we show here,
these basis functions can be eigenmodes of the unper-
turbed parallel FPI only, propagated unidirectionally
throughout the entire system.

Referring to Fig. 1, Fig. 8, and Fig. 9, we begin by ig-
noring all apertures everywhere in the system, and choos-
ing the length and mirror curvatures of the unperturbed
(e.g., infinite-aperture, spherical-mirror, and cold) paral-
lel FPI. These geometric configuration parameters de-
fine a set of standing-wave eigenmodes with a particular
spot size and a wave-front radius of curvature at M1 that
matches that of M1 before thermal loading. We select
these eigenmodes as the spatial basis functions that will
describe the transverse laser field everywhere in the sys-
tem.

Referring to Fig. 1 and Fig. 10, we position another
mirror at the location of the power recycling mirror (PRM)
M5 to couple optically the two Fabry–Perot interferom-
eters, and we propagate the lowest-loss (i.e., ‘‘fundamen-
tal’’) basis function out of the parallel FPI through the
beam splitter to the intracavity input reference plane z5

,

of the PRM. We calculate the value of the curvature 1/RF
of the extracted fundamental FPI eigenmode at z5

, and
set the unperturbed curvature of M5 to that value. We
also compute the spot radius w5 of the fundamental basis
function at z5

, so that we can determine the perturbed
curvature mismatch matrices C5

6 using the true curva-
ture 1/R5 in Eq. (14) and Eq. (15).

Following the same unidirectional approach, we propa-
gate the fundamental basis function from the PRM intra-
cavity output reference plane z5

. to the intracavity refer-
ence planes z2

. of M2 and then z4
. of M4 in the

perpendicular FPI. At each of these two reference
planes, we compute the curvature and spot radius of the
corresponding laser field and then set these values as the
appropriate unperturbed parameters of these mirrors.
As in the case of M5 , any discrepancies between the un-
perturbed curvatures of the propagated basis functions
and the true curvatures of the perpendicular mirrors are
then captured by the C6 perturbation matrices defined by
Eq. (14).

We complete our specification of the unperturbed geom-
etry of the interferometer by propagating a selected set of
unperturbed transverse spatial eigenmodes from the par-
allel FPI throughout the PRFPMI. This procedure de-
fines a (possibly incomplete) set of spatial basis functions
with which intracavity fields in the PRFPMI can be speci-
fied. Furthermore, by propagating the intracavity basis
functions out through both the dark port and M5 , we can
use the same unperturbed basis for the extracavity fields
F1, E1, and E2 shown in Fig. 10. In general, the input
field F1 will not be described solely by the outward-
propagated fundamental eigenmode of the parallel FPI;
instead, it will be represented by a linear combination of
some subset of the modes available in the unperturbed
basis.

The spherical-mirror, infinite-aperture, cold approxi-
mation of the unperturbed gravitational-wave interferom-
eter lends itself to a convenient representation of intrac-
avity fields by power-orthogonal Hermite–Gauss modes.
However, even when the mirrors remain spherical and
thermal lensing is ignored, this basis cannot represent all
possible perturbed fields with arbitrarily high accuracy
under all circumstances. For example, in cases where ei-
ther the recycling cavity is geometrically unstable or a
thermal lens is so strong that the sign of the curvature of
a wave front propagating through the substrate changes,
then we expect that the number of stable unperturbed ba-
sis functions needed to represent that field will become
prohibitively large. Furthermore, if either finite aper-
tures or nonspherical mirrors are used to define the un-
perturbed basis numerically, it is possible that residual
diffraction of a non-Hermite–Gauss fundamental basis
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function from M5 (followed by propagation to M6) will
generate a field profile that has a mean spot radius that
differs from the value computed with the field profile ob-
tained by propagating the lowest-loss parallel eigenmode
from M1 to M6 . In this case, a biorthogonal basis can be
chosen, but special care must be taken to ensure that the
eigenmode expansions converge.25 When a self-
consistent basis can be chosen, and the corresponding
perturbation expansion of the physical observables under
simulation converges, the matrix representation of the
problem can allow computations that are orders of mag-
nitude faster than those performed by FFT codes.

Now that we have defined a self-consistent set of spa-
tial basis functions at every reference plane in the LIGO
PRFPMI, we can introduce the perturbations by setting
the apertures and curvatures of the mirrors and beam
splitter to their true values, and then computing the ma-
trices that characterize the effects of aperture diffraction,
wave-front–mirror curvature mismatch, and thermal fo-
cusing on laser fields expressed as linear combinations of
the unperturbed basis functions. Initially, we solve Eq.
(69a) in the limit F1 → 0 to obtain the perturbed fields of
the cold interferometer, and then we choose a relatively
low but finite input power (e.g., 0.1 W) for the input field.
The steady-state intracavity fields under this small ther-
mal load can be found by a straightforward, self-
consistent procedure:

1. Using the current intracavity fields, we compute
the powers absorbed in the mirror and beam-splitter sub-
strates and coatings, and we update the substrate ther-
mal OPD matrix elements given by Eq. (34) and Eq. (40),
which depend nonlinearly on these powers.

2. Following the procedure outlined in Subsection 3.B,
we adjust the micropositions of M1 , M2 , M6 , and M5 to
achieve optimum resonant phase conditions for the
lowest-order carrier mode in each of the three optical
cavities.

3. We recompute the intracavity fields using Eq.
(69a).

4. We repeat the previous steps until the recycled
power 1

2 (quE5q
2 u2 has stabilized.

Note that we do not propagate the field from one refer-
ence plane to another throughout the interferometer. In
this case, even when the simulated phase-control system
is used, the fields tend to converge after a number of it-
erations implied by the photon storage lifetimes of the
arm cavities. Furthermore, we do not use more compli-
cated nonlinear gradient-search methods to determine
the intracavity fields because the number of variables
(field basis function coefficients) is extremely large, and
the variables at any single location in the interferometer
are linked to those at all other locations by nontrivial
round-trip propagators. Instead, the solution procedure
we have detailed above can provide convergence to a few
parts in 104 in only a few iterations.

The steady-state fields arising from higher input pow-
ers can be found by initializing the convergence process
with scaled field amplitudes computed at a lower power.
For example, if a stable solution has been found at 2 W
total input power, then the same collection of intracavity
fields, scaled by a factor of 2, would be reasonable initial
values for an input power of 8 W. Similarly, if the input
power is held constant, but some other parameter of the
PRFPMI configuration (such as the PRM curvature) is
varied, the intracavity fields can be reused from one pa-
rameter value to the next. In this way, a set of solutions
for a variety of different interferometer parameter sets
can be constructed in a few minutes with a typical desk-
top computer.

An object-oriented numerical computer model of the
initial LIGO interferometer based on these algorithms
has been implemented with the class mechanism of the
MATLAB programming language.26 The resulting collec-
tion of MATLAB source code files, hereafter referred to as
‘‘Melody,’’ is available publicly for examination and
execution.27

D. Comparison with a Fast-Fourier-Transform Model
In certain limited cases, the predictions made by Melody
can be compared with those of a Fortran implementation
of a fast-Fourier-transform (FFT) model of the initial
LIGO interferometer.17 The FFT model was designed to
investigate geometric requirements and tolerances for ini-
tial LIGO optical components, and it allows either a mea-
sured or simulated static OPD phase map to be included
in each reflective surface. By contrast, the Melody solu-
tion method described in Subsection 3.C allows the evolv-
ing fields everywhere in the interferometer to alter the lo-
cal phase maps with nonlinear thermal lensing, so that
both the field and mirror are distorted by their reciprocal
interaction. For the FFT, the paraxial approximation is
used in order to calculate the propagators between mir-
rors, as matrix operators in the spatial frequency domain.
The lengths are optimized in order to achieve a stationary
locked configuration, and the power stored inside the
arms and the recycling cavity is evaluated. The final
fields obtained may be analyzed for modal composition.
In contrast, the Melody program starts with a fixed num-
ber of paraxial modes. The matrix elements coupling the
modes are then analytically calculated with the algo-
rithms described in Subsections 2.B and 2.C, with the
thermal effects perturbatively evaluated at every itera-
tion until stationarity is achieved.

While the basic optics and wave-equation assumptions
are the same, the two programs have markedly different
implementations. In the case of the FFT code, the car-
rier and the sidebands are simulated by two separate,
consecutive runs so that the cavity lengths are optimized
for the carrier, and the dimensions of the recycling cavity
are optimized for the sidebands. As discussed previously,
the idealized Melody control system sets the cavity
lengths by ensuring a round-trip phase of zero for the
lowest-loss eigenmode. The FFT solutions scale linearly
with initial field power, but in Melody, the power is shared
by carrier and sidebands; the carrier and sideband fields
are separately calculated, and their combined power at
each iteration affects the thermal-lens distortion nonlin-
early. The FFT features fine-grained meshing of fixed
phase map information, being intended primarily to study
arbitrary mirror aberrations. On the other hand, Melody
is intended to much more rapidly study coarser-grained
effects with specific emphasis on the nonlinear effects of
thermal focusing. Significantly, the computational hard-



Beausoleil et al. Vol. 20, No. 6 /June 2003/J. Opt. Soc. Am. B 1263
ware requirements for the codes are dramatically differ-
ent: a typical FFT run requires 30–60 min. on a super-
computer, while a typical Melody computation requires
only a few seconds to stabilize.

The parameters that we used in our simulations are
shown in Table 4 and Table 5. The RF modulation fre-
quency was chosen to be v1/2p [ 24.485446 MHz (with a
modulation depth of 0.47), and the length of each arm
cavity was adjusted slightly from the nominal value of
4000 m in the Melody computations to guarantee an an-
tiresonance to within machine precision. The current de-
sign value of the initial LIGO common length (the aver-
age of the distances between the power-recycling mirror
and the input test masses) is 9.183 m, and the differential
length (or ‘‘Schnupp’’) asymmetry (the difference between
the distances between the parallel and perpendicular
ITM and the PRM) is LS 5 0.3 m. The distance between
the beam splitter and the PRM has the value 6.25 m, and
all simulations were performed with the Nd:YAG laser
wavelength l0 5 1.0642 mm. As a first comparison, both
codes were used to simulate the unperturbed initial LIGO
interferometer, with perfect mode matching, infinite-
diameter optics, and no thermal distortion. The agree-
ments between computations of reflected and transmitted
power with analytical calculations are within 0.2% for
both the FFT code and Melody.

In the absence of thermal loading, we have studied the
dependence of the parallel (in-line) arm-cavity power
buildup on the diameter of the ETM M3 . A comparison
between the predictions of Melody and the FFT code tests
the suitability of the former’s basis-function-expansion
approach to calculating interferometer power levels, par-
ticularly when the cavity losses are large enough to re-

Table 4. High-Reflection (hr) and Antireflection
(ar) Loss Parameters for the Initial LIGO Optical

Elements Used in Our Simulations28 a

Parameter Loss (ppm)

ahr 0.5
aar 0.5
shr 55.0
sar 90.0

a We assign a scattering loss of 900 ppm to the AR coatings of the ITM
mirrors to account for power pick-off monitoring losses. Here ac is the
optical power absorption that contributes to the substrate thermal loss,
and sc is the scattering loss.

Table 5. Physical Parameters for the Initial LIGO
Optical Elements Used in Our Simulations28 a

Mirror RM (m) h (m) r2 t2

M1 , M2 14 571.0 0.10 0.971 1 2 r2 2 lhr

M3 , M4 7 400.0 0.10 1 2 t2 2 lhr 1.5 3 1025

M5 9 999.8 0.10 0.973 1 2 r2 2 lhr

M6 ` 0.04 0.495 1 2 r2 2 lhr

a Each substrate is fused silica, with parameters given by Table 1 and a
radius a 5 12.5 cm. Here the total loss lhr 5 ahr 1 shr , where ahr and
shr are the power absorption and scattering losses in the high-reflection
coating, respectively.
quire the inclusion of a large number of modes. In Fig.
11, we plot the ratio of the total circulating optical power
at reference plane z1

. in Fig. 8 to the total carrier input
power 1

2 uF0
1u2. When the 28 lowest-loss Hermite–Gauss

modes (corresponding to m 1 n < 6) of the parallel FPI
are used, the agreement is excellent even at an ETM di-
ameter of only 15 cm, which imposes a round-trip diffrac-
tive loss of approximately 2000 ppm. For comparison, we
have included a trace displaying the stored power in the
parallel arm expected when the intracavity loss is due to
simple single-pass aperture clipping. Note that this na-
ive assumption underestimates the true diffractive loss
by a factor of ;2.14 for this beam spot size at M3 .

In the thermally loaded simulations that are described
in Subsection 3.E, the increase in thermal focusing power
of the ITM substrates improves the geometric stability of
the power recycling cavity by increasing the apparent
ITM radii of curvatures. However, if we reduce the ra-
dius of curvature (ROC) of either ITM below the design
value of 14.571 km, the recycling cavity becomes un-
stable, resulting in a large reduction in stored power.
Previous studies of this phenomenon using the FFT code
have shown that, for small changes in ITM curvature,
only the sidebands suffer this power degradation; the car-
rier resonance condition in the corresponding arm cavity
serves to stabilize the recycling cavity mode by attenuat-
ing the antiresonant higher-order modes. Therefore
since our model uses stable resonator eigenmodes as the
spatial basis functions for the field expansions, this is a
much more strenuous test than the aperture-reduction
example, requiring a substantially greater number of
transverse modes. In Fig. 12, we show the dependence of
the power-recycling cavity gain on the perpendicular (out-
line) ITM radius of curvature. The Melody results for the
carrier agree essentially perfectly with those of the FFT
code even when we employ only the 28 lowest-loss
Hermite–Gauss modes of the parallel FPI. However, to
obtain reasonably small discrepancies between the pre-
dictions of the sideband behavior in the highly unstable

Fig. 11. Comparison between the predictions of computer code
based on our model (Melody) and those of the FFT model in the
case of simple aperturing. The power enhancement (or ‘‘gain’’)
at the parallel/in-line FPI reference plane z1

. in Fig. 8 is plotted
as a function of the aperture of M3 . The ‘‘clip approximation’’
represents the result expected by assuming that the loss arises
from simple single-pass aperture clipping at M3 .
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regime, we must include all basis functions satisfying m
1 n < 20, or 231 modes.

E. Initial LIGO Optical Performance Simulations
We now turn to simulations of the basic initial LIGO in-
terferometer in the presence of thermal loading of the op-
tics. Because of the high power levels maintained in the
interferometer to suppress shot noise, the absorption of
power in the ITM substrates and coatings and the subse-
quent thermal focusing must be incorporated into the in-
terferometer design. Using Melody, we explore in detail
the effects of this focusing on the optical performance of
the interferometer. Since the recycling cavity is operat-
ing in a region of geometric stability under full thermal
load, we have run our simulations using the 28 lowest-
loss Hermite–Gauss modes (corresponding to m 1 n
< 6) of the parallel FPI.

If the radius of curvature of the power-recycling mirror
M5 is chosen to be the cold-cavity mode-matched value
shown in Table 5, the thermal distortions caused by the
substrates in the recycling cavity will destroy this mode
matching and significantly reduce the available recycling
gain for the sidebands. In Fig. 13 and Fig. 14, we plot
the sideband recycled powers uF5,61

2 u2 given by Eq. (69a)
as a function of the PRM ROC R5 for the initial LIGO
TEM00 operating input laser power of 6.5 W, with 5.8 W
delivered by the carrier when the sideband modulation
depth is 0.47. (The feature near 11.5 km corresponds to
the ROC at which the carrier TEM00 emerging from the
dark port is absolutely minimized by the pseudolocker.)
The presence of the arm cavities significantly reduces the
sensitivity of the carrier to these perturbations, resulting
in an approximately constant recycling gain of 50 when
the parameters specified in Table 1, Table 4, and Table 5
are used. Note that the optimum mode matching of the
parallel and perpendicular segments of the recycling cav-
ity occurs when the PRM ROC has increased to approxi-
mately 12.5 km.

One of the most striking details of Fig. 13 and Fig. 14 is
the significant difference in the recycling gain of the

Fig. 12. Comparison between the predictions of Melody and
those of the FFT model in the case of unstable curvature reduc-
tion. The gain at the recycling mirror reference plane z5

. in Fig.
10 is plotted as a function of the curvature of M2 . Note that, in
the absence of thermal loading, the recycling cavity becomes un-
stable for the resonant sidebands at a radius of curvature of
14480 m.
upper (1Dv1) and lower (2Dv1) sideband fields. Such a
sideband imbalance can lead to significant gravitational-
wave detection noise signatures that are qualitatively ab-
sent when the balance is exact. Since the ratio Dv1 /v0
is immeasurably small for RF sidebands and (by design)
there is a very high degree of geometrical symmetry be-
tween the Michelson branches of the interferometer, we
naively expect the sideband fields to interact identically
with geometrical distortions as long as these distortions
are frequency independent at the RF scale. In principle,
this symmetry is broken only by the macroscopic value of
the Schnupp asymmetry LS [ L51 2 L52 , where L5j is
the optical path length separating M5 and Mj . For
gravitational-wave interferometers, LS is much smaller
than the Rayleigh length, so both sidebands should inter-
act nearly identically with either arm, except for a phase
accumulation proportional to the distortion-independent
factor Dv1LS .

In practice, however, the symmetry is also broken
slightly by small differences between the mirror figures
and loss parameters in the two Fabry–Perot resonators
and much more significantly by the beam-splitter thermal
lens in the parallel arm. Using both Melody and the FFT
code, we have determined that our simulations strictly

Fig. 13. Initial LIGO recycled powers as a function of the PRM
radius of curvature. The total TEM00 input laser power is 6.5 W,
with 5.8 W delivered by the carrier.

Fig. 14. Initial LIGO antisymmetric (‘‘dark’’) port output powers
as a function of the PRM radius of curvature. The total TEM00
input laser power is 6.5 W, with 5.8 W delivered by the carrier.
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show excellent sideband balance if either LS → 0 or the
net branch distortions are identical. Of course, with
Melody, we have determined that the branch distortions
cannot be identical when the thermal lens in the beam-
splitter substrate is significant; this source of additional
distortion in the parallel arm requires a significant dis-
placement of the beam splitter to maintain the dark-port
condition and is therefore the primary cause of the imbal-
ance shown in Fig. 13 and Fig. 14. In fact, as seen in Fig.
12, the FFT code reproduces this behavior when the field-
mirror curvature mismatch at the perpendicular ITM be-
comes large, causing a significant difference between the
net distortions of the two arms. Physically, the imbal-
ance arises whenever the spatial structures of the side-
band fields returning to the front of the beam splitter
from the arms differ significantly, because the
pseudolocker cannot adjust the positions of the beam
splitter and power-recycling mirror to simultaneously op-
timize the carrier TEM00 performance and reduce dis-
similarities between the sideband spatial field distribu-
tions.

Further studies with Melody have shown that it is pos-
sible to improve the sideband balance by adopting one of
the following procedures:

1. As shown in Fig. 14, we can specify the curvature of
the PRM to operate the system at a reduced average out-
put power where the sideband balance is improved.

2. We can supplement the procedure outlined in Sub-
section 3.B with an additional step that readjusts the po-
sitions of both M5 and M6 , but at the expense of increas-
ing the TEM00 carrier output power at the antisymmetric
port by approximately an order of magnitude.

Both choices are nontrivial to execute in practice. The
former requires a precise foreknowledge of the optical loss
and geometric parameters of each of the optical compo-
nents, and the latter choice adds considerable complexity
to the servo-control system of the PRFPMI.

For the purposes of our discussion here, we have cho-
sen a value of the PRM ROC that minimizes both the fun-
damental carrier power and the sideband imbalance at
the antisymmetric output port. This strategy produces
the optimum initial LIGO PRM radius of curvature as a
function of total TEM00 input laser power shown in Fig.

Fig. 15. Optimum initial LIGO PRM radius of curvature as a
function of total TEM00 input laser power.
15. Again, we have assumed a modulation depth of 0.47,
which pushes ;10% of the total available laser power into
the sidebands. The corresponding optimized initial
LIGO recycled and output sideband powers are shown in
Fig. 16 and Fig. 17, respectively. Note that at each value
of the input power in these two plots, the corresponding
PRM ROC shown in Fig. 15 has been used. Although the
residual imbalance of the recycled sideband fields re-
mains at the 3–4% level at an input power of 10 W, the
imbalance at the antisymmetric port is negligible.

As an example of the operating characteristics of a
fixed interferometer design point, Fig. 18 and Fig. 19 give
the recycled and output powers at the carrier and side-
band modulation frequencies for an interferometer opti-
mized for a total laser input power of 6.5 W. The opti-
mum PRM ROC is 12.281 km, and, as shown in Fig. 18,
the recycling gain for the carrier is ;50. Figure 19 pre-
dicts that, at 6.5 W, the sidebands are approximately bal-
anced, with ;255 mW in each field, while the total carrier
power emerging from the dark port is ;10 mW. Approxi-
mately 90% of this carrier power is stored in higher-order

Fig. 16. Optimized initial LIGO recycled sideband powers as a
function of total TEM00 input laser power. At each value of the
input power, the PRM radius of curvature shown in Fig. 15 has
been used.

Fig. 17. Optimized initial LIGO antisymmetric (‘‘dark’’) port
output sideband powers as a function of total TEM00 input laser
power. At each value of the input power, the PRM radius of cur-
vature shown in Fig. 15 has been used.
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modes. Note that this optimum PRM ROC value is ;2.6
km shorter than the value of 14.9 km specified in the ini-
tial LIGO I reference design, primarily because of the sen-
sitivity of this parameter to the method chosen for side-
band rebalancing, the recycling gain, the thermo-optic
coefficient dh/dT of the substrate, and the substrate and
coating absorption coefficients.

The behavior of the idealized PRFPMI phase-control
system is illustrated in Fig. 20. The PRM (M5) is ini-
tially pulled in toward the beam splitter to compensate
for the longitudinal phase introduced by the mismatch be-
tween the curvatures of the field emerging from the par-
allel FPI and the PRM itself. However, as the strengths
of the thermal lenses in the ITM substrates increase, the
mirror is pushed away from the beam splitter to maintain
the carrier resonance. Similarly, as the astigmatic ther-
mal lens develops in the beam-splitter substrate, the
beam splitter moves slightly toward the lower right in
Fig. 1. Indeed, as we see in Fig. 21, even in the y –z
plane, the effective focal length of the beam-splitter sub-
strate is six times larger than that of either ITM sub-
strate; nevertheless, the resulting asymmetry between
the two Michelson arms is numerically detected and com-
pensated.

Fig. 18. Initial LIGO recycled powers as a function of total
TEM00 input laser power.

Fig. 19. Initial LIGO antisymmetric (‘‘dark’’) port output powers
as a function of total TEM00 input laser power.
4. CONCLUSION
We have developed highly detailed steady-state analytical
and numerical models of the physical phenomena that
limit the intracavity power enhancement of recycled
Michelson Fabry–Perot laser gravitational-wave detec-
tors. We have included in our operator-based formalism
the effects of nonlinear thermal lensing due to power ab-
sorption in both the substrates and coatings of the mir-
rors and beam splitter, the effects of any mismatch be-
tween the curvatures of the laser wave front and the
mirror surface, and the diffraction by an aperture at each
instance of reflection and transmission. We have taken
great care to preserve numerically the nearly ideal longi-
tudinal phase resonance conditions that would otherwise
be provided by an external servo-locking control system.
Once the mirrors and beam splitters have been analyzed
and their transfer matrices constructed, more compli-
cated optical components and structures (such as Fabry–
Perot and Michelson interferometers, and the LIGO de-
tector) can be modeled by simple matrix composition.

Our formalism relies on the validity of an expansion of
the intracavity electromagnetic field at any reference
plane in a necessarily incomplete set of possibly bior-
thogonal basis functions that are derived from eigen-
modes of one of the Fabry–Perot arm cavities. In two

Fig. 20. Initial LIGO PRM and beam-splitter microdisplace-
ments as a function of total TEM00 input laser power.

Fig. 21. Initial LIGO effective (i.e., quadratic) thermal focal
lengths as a function of total TEM00 input laser power.
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specific cases, we have checked the results produced by
Melody, a fast MATLAB implementation of our model,
against those generated by an FFT program used to
model optical imperfections in LIGO. We have found
that Melody can accurately predict the behavior of the
carrier even in highly perturbed cold resonators with a
modest number of spatial basis functions in orders of
magnitude less time than is required by the FFT code.
The same is true for the sideband fields stored in the
power-recycling cavity, except in the case where the re-
cycling cavity is significantly geometrically unstable.
Even in this situation, which does not arise when the in-
terferometer is thermally loaded, accuracy can be im-
proved substantially by including more modes in the
simulation.

We have discovered and described in broad terms the
conditions under which the power stored in the two side-
band fields can become unbalanced, potentially affecting
the noise sensitivity of the gravitational-wave interferom-
eter in the detection band. At this point, we have iden-
tified two possible (but potentially difficult to implement)
solutions to this problem that will allow a reduction of the
sideband imbalance at the expense of a previously opti-
mized optical property of the carrier field. In our nu-
merical simulations, we have found that, under condi-
tions similar to the operating characteristics of initial
LIGO, the optimum PRM ROC is only 12.3 km (for bal-
anced sidebands), rather than the value of 14.9 km speci-
fied in the initial LIGO I reference design. Clearly, the
precise value of the optimum PRM ROC depends sensi-
tively on the method chosen for sideband rebalancing, the
recycling gain, the thermo-optic coefficient dh/dT of the
substrate, and the substrate and coating absorption coef-
ficients.

In the future, we will include the effects of thermoelas-
tic surface deformation in our model and apply it to pro-
posed configurations of the advanced LIGO interferom-
eter. Other systematic perturbations and imperfections
(e.g., mirror tilt and transverse displacement) can be in-
cluded easily by incorporating the appropriate operators
into the transfer matrices describing reflection and trans-
mission for the mirrors and beam splitter. In addition,
we intend to develop algorithms for the simulation of the
optical response of an interferometer to gravitational ra-
diation, with the intention of estimating the detection
sensitivity of advanced LIGO under full thermal load.
We anticipate that the performance of the Melody pro-
gram will not be significantly affected by these modifica-
tions.
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