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Abstract

Mechanical loss in pendulums is a subject of great importance to gravitational waves detectors being built and being
planned, as this determines the level of thermal noise associated with the detector suspensions. Relationships between the
mechanical loss of the pendulum and the mechanical loss of the suspending fibres or wires can be derived in two apparently
contradictory ways which give answers different by a factor of two. In this paper the differences are resolved and it is shown
that both methods lead to the same answer. q 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

It is well known that the loss factor of a pendulum
is considerably lower than the loss factor of the
wires used to suspend it. This is a result of most of
the energy being stored in lossless gravitational po-
tential energy with only a small part of the energy
being stored in the bending of the suspending wires.
Relationships between the loss of the pendulum and
the loss of the wires have been derived by a number

w xof researchers, see for example Saulson 1 , Bragin-
w x w xsky 2 and Gonzalez and Saulson 3 . However there

are aspects of the derivation of these relationships

) Corresponding author.
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which require further discussion of the basic physics,
as it is possible to approach the problem in two
different ways and obtain relationships which appar-
ently differ by a factor of two. One method of
calculating the loss of the pendulum from the loss of
the material of the wire involves using the ratio
between the potential energy stored in the wire to the
total potential energy stored in the system; the other
method involves expressing the effective spring con-
stants of the pendulum and the wire as complex
quantities with the relevant loss factor being ex-
pressed as the ratio between the imaginary to the real
part. In this paper we shall address this issue and
show that there is a misconception in estimating the
overall spring constant of the pendulum in too ap-
proximate a manner.

0375-9601r00r$ - see front matter q 2000 Elsevier Science B.V. All rights reserved.
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2. Highlighting the problem

In the equation of motion of a pendulum it is
possible to take damping into account by introducing

w xan imaginary restoring force 4 .
The ratio between the imaginary and the real

Ž .restoring force thus, spring constant at any fre-
quency is called the Loss Angle or Factor f and it is
usually chosen as a parameter suitable to quantify
the level of dissipation in a particular dynamical
system. In a simple harmonic oscillator, like a pen-
dulum, the inverse of the loss angle is the quality
factor Q of the resonance where the quality factor is
proportional to the ratio of the energy stored in a
system to the energy dissipated per unit time.

To be more detailed, the same argument can be
applied to the elastic properties of a material; in this
case the Young’s modulus Y is considered a com-
plex number rather than real and the ratio of the
imaginary to the real part of Y, namely the loss
angle, is a characteristic parameter of the material.
Typical values are between 10y6 and 10y3. Our
discussion is centered on the relation between the
pendulum loss angle f and the loss angle f ofpend mat

the material of the suspension wire.
The problem being discussed is most easily high-

w xlighted by following Saulson 1 for the case of a
simple pendulum consisting of a mass joined well
above its centre of mass to a single suspension wire.
It should be noted that for such a system the bending
of the wire as the pendulum swings is localised close
to the top of the wire.

In order to work out the loss angle of the pendu-
Ž .lum, one has to solve the elastic Eq. A.1 of a thin

beam longitudinally pre-stressed. Detailed calcula-
tions are shown in Appendix A where we obtained
the horizontal wire displacement y from the vertical
position as a function of the time t and the vertical

Ž .position along the x axis see Fig. 1 :

F
i v t yl x iv tw xy x ,t sy x e s e ql xy 1 e 1Ž . Ž . Ž .

Tl

Ž .F is the amplitude of the sinusoidal force Fexp iv t
applied horizontally at the end of the wire, T is the
tension in the wire, ls TrY I , Y is the magni-( 0 0

tude of the Young’s modulus of the material and I is

Fig. 1. Schematic of the deformation of the wire once it is pulled
apart by the force F. The tension T is the weight of the suspended
pointlike mass. The pendulum swings with an effective length
smaller than the real length L by the amount 1rl.

the moment of the cross section of the wire. This
equation is valid for low frequencies where the
inertia of the wire can be considered negligible.

Once the deformation of the wire is known, the
stored elastic energy V is worked out using theel

w xrelation 5 :

221 d y xŽ .L
V s Y I dxHel 0 2ž /2 dx0

1 T Y I0 2, d t 2Ž . Ž .( 2ž /2 2 L TL

where L is the length of the wire and d is the
horizontal displacement at its end. Through the ac-
tion of the tension T given by the weight of the
suspended mass, energy is also stored in the gravita-
tional field. This energy is:

1 T 2V s d t 3Ž . Ž .g 2 L

In our case, for the same displacement d , the energy
stored in the gravitational field is much more than
the energy stored in the elastic deformation of the
wire. Therefore the total potential energy V can bet

aproximated by V . As discussed in Appendix B theg

ratio between the elastic energy, that is partially
dissipated, and the total potential energy, averaged
over one period of oscillation, as indicated by the
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bars over the symbols, gives the scaling factor from
the material loss angle to the pendulum one.

V V f Y Iel el mat 0
f sf , f s 4Ž .(pend mat mat 2V V 2 TLt g

The scaling factor is also called dilution factor. In
2(the equation above it is 2 TL rY I .0

Ž . Ž .Both V 2 and V 3 depend quadratically onel g

the displacement d . Therefore from the expressions
above one can define a spring constant for each of
the energies since the general relation Vskd 2r2 is
assumed. The two spring constants are:

T Y I0
k s 5Ž .(el 22 L TL

T
k s 6Ž .g L

In our case, it easy to see that the ratio between
potential energies is equal to the ratio between the

Ž .respective spring constants and then the Eq. 4 can
be replaced by f sf k rk obtaining the samepend mat el g

result.
Another way to work out the pendulum loss angle

is to consider the fact that in the frequency domain
Ž .the Young’s modulus is complex, YsY 1q if .0 mat

Ž Ž .For f <1 the beam equation see Eq. A.1 inmat
. w xAppendix A is still assumed valid 6 provided Y is0

replaced by Y.
Ž .Doing this the spring constants and the energies

are complex. The imaginary part of the spring con-
stant represents the dephasing between the displace-
ment of the spring and the force applied at, due to
the anelastic behaviour of the material. Any dephas-
ing between force and displacement is equivalent to
an energy dissipation.

ŽUsing the aproximation Y 1q if , Y 1( Ž . (0 mat 0
.q if r2 the total spring constant k sk qkmat pend g el

is:

T 1 YI
k s 1q (pend 2ž /L 2 TL

T Y I f0 mat1, 1q 1q i 7Ž .(2 2 ž /L 2TL

2(In our case the term Y IrTL < 1 and then k0 pend

can be written:

T f Y Imat 0
k , 1q i 8Ž .(pend 2ž /L 4 TL

Then from the above equation the pendulum loss
Ž .angle is the phase angle of the total complex spring

constant, from the previous equation:

f Y Imat 0
f s 9Ž .(pend 24 TL

A factor of 2 difference from the expression in Eq.
Ž .4 is clearly seen. Interestingly, this result agrees
with that from a derivation based on complex energy
expressions. Using the same aproximation for
Young’s modulus as above one can write the elastic

Ž .energy 2 as:

1 T Y I f0 mat 2V , 1q i d(el 2 ž /2 2 L 2TL

fmat0sV 1q i 10Ž .el ž /2

Where V 0 is the real part of the elastic energy.el

From the considerations above, just the imaginary
part f V 0r2 represents the energy dissipated andmat el

Ž .then one can write Eq. 4 as:

0V r2 f Y Iel mat 0
f ,f s 11Ž .(pend mat 2V 4 TLg

Ž .which is the same as the Eq. 9

3. The solution

In order to find out where the discrepancy is, it is
better to check carefully the validity of the relations
so far used.

Firstly, in Appendix B it is shown that for an
anelastic body having a material loss angle f andmat

undergoing a periodic stress, the cycle-averaged dis-
sipated energy is proportional to the cycle-averaged
stored elastic energy through the constant 4pfmat
Ž Ž ..Eq. B.13 .

Therefore, equating the dissipated energy written
Ž .either as proportional to the elastic energy B.13 or
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proportional to the total potential energy through the
constant 4pf ,pend

4p f V s4p f V 12Ž .mat el pend t

Ž .and, the energy relation 4 is easily obtained.
Ž .Secondly, from the solution 1 of the beam equa-

tion the total spring constant of the pendulum kPend

can be worked out since k is defined as FrdPend

where d is the displacement of the free end of the
Ž .wire. The result is see Appendix A :

T YI
k s 1q 13Ž .(Pend 2ž /L TL

As can be seen, the previous result is different from
Ž .the first equation in 7 by a factor of 2 outside the

square root term.
'Applying the same aproximation for Y used

Ž .earlier to 13 a pendulum loss angle f equal topend
Ž .the result 4 is found.

At this point it seems that the discrepancy is due
Ž .to an incorrect expression 7 used previously for

k . In fact, detailed calculations reported in Ap-Pend

pendix A show that the rigidity of the wire produces
a shortening effect on the effective length of the
pendulum. As a consequence, new expressions for
the gravitational energy V and the gravitationalG

spring constant k have to be introduced:G

1 T 1 YI
2V s 1q d 14Ž .(G 2ž /2 L 2 TL

T 1 YI
k s 1q 15Ž .(G 2ž /L 2 TL

In this new expression for the gravitational energy,
the complex Young’s modulus of the material is
present and this means that some energy is dissi-
pated. The same happens to the elastic energy Vel
Ž .10 .

In order to clarify the relation between the com-
plex phase of the spring constant and the energy
dissipation rate, firstly it can be seen that both kG

Ž .and k have expressions of the form ksk 1q ifel 0

where k is real and positive. Then the restoring0

force acting on the mass is:

F t sR yk 1q i f d t 16� 4Ž . Ž . Ž . Ž .R 0

where the displacement d is:

� i v t 4d t sR a e 17Ž . Ž .
a being the complex amplitude of oscillation. The

Ž .instantaneous power provided by the force is P t s
˙ ˙Ž . Ž . Ž .F t d t where d t is the velocity of the mass.R

Ž . Ž .Once the relations 16 and 17 have been used in
the power expression and after an integration in time
over one period ts2prv of oscillation is done,
then the energy V provided by the force F is:d R

aa)

V sy2p f k 18Ž .d 0 2

The negative sign signifies that energy is being lost.
Both the gravitational and the elastic forces supply
energy to the pendulum and once k and f are0

replaced by the relevant expressions, the energy
Tlosses can be added to give the total lost energy Vd

per cycle:

)T Y I f aa0 matT G elV sV qV ,y2p 19Ž .(d d d 2L 2 2TL

2(for Y IrTL <1. With the same aproximation the0

total potential energy averaged in one cycle is V ,t
) Ž .TrLPaa r4. Then the Eq. 19 can be written in the

following way:

Y I f0 matTV sy4p V sy4p f V 20Ž .(d t pend t2 2TL

from which the same loss factor of the pendulum as
Ž .in 4 can be worked out.
This method of identifying the dissipation mecha-

nism given in Appendix B gives the same result as
the method of the spring constant dephasing.

4. Conclusion

If the spring constant for the pendulum is calcu-
lated in full there is no discrepancy between the loss
of the pendulum calculated by the two different
methods. For a pointlike mass the result is:

f Y Imat 0
f s 21Ž .(pend 22 TL
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It is interesting to note, however, that, although in
this model all the dissipation mechanisms are inside
the wire, the stiffness of the wire affects the energy
stored both in the wire bending and in the vertical
position of the mass, when the horizontal deflection
of the lower end of the wire is chosen as a dynamic
variable.

The method of identifying the dissipation mecha-
nism gives the energy dissipated in a particular part
of the system. In the case of the pendulum this part
is the wire and it is the only part able to dissipate
energy.

The other method uses the complex phase of the
spring constant. If this method is applied to the total
spring constant, it gives the overall energy lost by
the forces acting on the system whereas, if it is
applied to each spring constant, it gives the energy
lost by the relevant force.

The sum of the energies lost by the external
forces is equal to the energy dissipated.

Appendix A.

Ž .If a small force F t is applied to the end of a
thin rod with a linear mass density r, under a tension

Ž .Tsmg as shown in Fig. 1, the deflection y x,t of
w xthe rod is the solution of the following equation 5 :

E 2 y
XXXX XXYI y yT y sr A.1Ž .2E t

where each apostrophe stands for a derivative with
respect to x. In the case of harmonic excitation
Ž . i v tF t sF e it is possible to find the solution as
Ž . Ž . i v t Žy x,t sy x e . The boundary conditions are: y x

. XŽ .s0 s0 and y xs0 s0 for the upper clamp;
XXŽ . Ž . XXXŽ . XŽy xsL s0 no torque and YI y xsL yT y x

.sL sF for the free end. For sufficiently small
Ž .angular frequency v the inertial term i.e. the r.h.s

Ž .of the Eq. A.1 may be considered negligible com-
pared to the other terms. In this approximation and
considering the boundary conditions, the deformation
Ž .y x is given by:

F
yl xw xy x s e ql xy1 A.2Ž . Ž .

Tl

'where ls TrYI . In all the following calculations
it is assumed that lL41. The wire length L and its
projection l on the vertical axis x are related as:

2 2dy 1 dyl l
Ls 1q dx, 1q dxH H( ž / ž /dx 2 dx0 0

21 d 1
, l 1q 1q A.3Ž .ž / ž /2 l 2ll

Ž .where dsy l . The inverse of the previous equation
is:

21 d 1
l,L 1y 1q A.4Ž .ž / ž /2 L 2lL

where all the terms of order greater than 2 in the
power of drL are neglected.

Ž .From Eq. A.2 it is possible to extract the equiva-
lent spring constant of the pendulum k :Pend

F Tl
k s s A.5Ž .Pend yl ld e qlly1

Considering that the replacement of l with L intro-
duces a negligible error of order drL < 1 and that
lL 4 1, the previous equation can be simplified as

T 1
k , 1q A.6Ž .Pend ž /L lL

The approximation l , L restricts validity to the
linear regime.

Now consider the estimation of the gravitational
and elastic energies when the wire is bent. Referring

Ž .to the Fig. 1 and using the Eq. A.4 , the gravita-
tional potential of the suspended mass is given by:

1 T 1
2V smg Ly l s 1q Pd A.7Ž . Ž .g ž /2 L 2lL

The elastic energy due to the bending is:

22d y 1 T 1l1 2V s YI dx, d A.8Ž .Hel 2 2 ž /ž / 2 L 2lLdx0

where the last approximation is valid when lL 4 1
and drL < 1. Then, the total potential energy V ist

the sum of the gravitational and bending energies:

1 T 1
2V s 1q Pd A.9Ž .t ž /2 L lL
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It is worthwhile to note the quadratic dependence of
these energies on the displacements d ; then a spring
constant for each of these energies can be extracted

1 2using the general relation Vs k x valid for the2

harmonic oscillator. In the case of the total energy
Ž .A.9 this yields a pendulum spring constant the

Ž .same as that Eq. A.6 .
For the gravitational and elastic energies, the re-

sulting spring constants k and k read:G el

T 1
k s 1q A.10Ž .G ž /L 2lL

T 1
k s A.11Ž .el ž /L 2lL

It is easy to see that adding k to k , the expressionG el
Ž .of k given in the Eq. A.6 is obtained.Pend

Appendix B. General formulation of energy dissi-
pation in an anelastic body

In any deformed elastic body the rate at which the
work is done in an infinitesimal element is p:

Eei j
pss B.1Ž .i j E t

where s is the stress and e is the strain, both of
them being temporally and spatially dependent. For a
sinusoidal motion at angular frequency v one can

Ž .write the stress as s t ss expiv t and the straini j i j
Ž .as e t se expiv t where e and s are now thei j i j

amplitudes of the respective quantities. The cycle
average of p will be the dissipated power p :d

v
)p s I s e B.2Ž .� 4d i j i j2

In general the stress and strain amplitudes are com-
plex since it is necessary to take into account the
phase. In the same way, the cycle average of the
stored energy density e is1:s

1 )e s R s e B.3Ž .� 4s i j i j4

1 Valid for a linear material.

The general constitutive relation of any linear mate-
rial is given by

t X X X
s t s c ty t e t dt B.4Ž . Ž . Ž . Ž .Hi j i jk l k l

y`

Ž .where the kernel of the convolution integral c zi jk l

is the time behaviour of the stress when a d function
Ž .strain is applied. Considering causality, c z isi jk l

always null for z-0 and for a perfect elastic mate-
Ž .rial it reduces to the simple form c d z . For ai jk l

w xhomogeneous material the stiffness tensor c is 7 :i jk l

c sm d d qd d ql d d B.5Ž .Ž .i jk l i k jl i l jk i j k l

where m and l are the Lame’s constants.
Ž .In the case of a sinusoidal oscillation e exp i v s ,k l

Ž .Eq. B.4 is:

˜ i v ts sC v e eŽ .i j i jk l k l

X i v ts C v q iC v e e B.6Ž . Ž . Ž .i jk l i jk l k l

˜ Ž . Ž .where C v is the Fourier transform of c z ,i jk l i jk l

written with its real and imaginary parts in the
Ž . Ž .second row. Once Eq. B.6 is inserted into Eq. B.2

Ž .and Eq. B.3 , we find, respectively, for the cycle-
averaged dissipated power density and for the stored
energy:

v
)˜p s I C v e e B.7Ž . Ž .½ 5d i jk l k l i j2

1 )˜e s R C v e e B.8Ž . Ž .½ 5s i jk l k l i j2

In order to calculate the imaginary and real parts of
the last equations it is worthwhile to use the follow-
ing mathematical relation:

˜ )C v e eŽ .i jk l k l i j

sC v R e e ) q i CX
v R e e )Ž . Ž .� 4 � 4i jk l k l i j i jk l k l i j

B.9Ž .

˜ ˜ w xbased on the symmetry C sC 7 .i jk l k l i j
Ž .The integral over the volume of the Eq. B.7 and

Ž .Eq. B.8 gives respectively the total average power
dissipated P and the total average elastic energy V .d el
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Noting that the period of the motion t is 2p r v

Ž .and using the Eq. B.9 , the total energy dissipated in
a cycle is:

P tsp CX
v R e e ) dVV B.10Ž . Ž .� 4Hd i jk l k l i j

X y1s4p C v C v V B.11Ž . Ž . Ž .i jk l i jk l el

where the second form follows from the first by
Ž .comparison with Eq. B.8 and from the definition of

V . In the special case where for each of the compo-el

nents of the stiffness tensor the real and the imagi-
nary parts are in the same ratio, i.e. if

CX
v sf v C v B.12Ž . Ž . Ž . Ž .i jk l mat i jk l

Ž .Eq. B.11 can be rewritten as

P ts4p f v V B.13Ž . Ž .d mat el

and the quality factor Q takes the usual form,

V qK 2 V 1el el
Qs2p s2p s B.14Ž .

P t P t f vŽ .d d mat

where K is the average kinetic energy which is
equal to V for a free harmonic oscillator. Since thisel

result has been obtained from a generic condition, it
means that, whatever strain distribution is consid-
ered, the ratio of the dissipated power to the potential

energy stored, both inside the body, leads to the
material loss angle f . When the body is undermat

another conservative force, then the amount of en-
ergy stored increases and a dilution factor appears. In
the case of the pendulum, the other conservative
energy is the gravitational one V and then theg

pendulum loss angle f is:pend

P t P t Vd d el
f s s sfpend mat4p V V qV4p V qVŽ .t el gel g

B.15Ž .
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