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Abstract—in this letter, we demonstrate a module that simul- domain by shift registers. However, accomplishing TSI in the
taneously performs optical time-slot interchange and wavelength gptical domain may be highly desirable to avoid optoelectronic
conversion of the bits in a 2.5-Gb/s data stream to achieve a re- 45i4 conversion, as well as the potentially limited switching

configurable time/wavelength switch. Our switch uses difference- d of electronic circuits. Similarl ll-ontical | th
frequency-generation (DFG) for wavelength conversion and fiber Speed ot elecironic circuns. similarly, all-optical waveleng

Bragg gratings as wavelength-dependent optical time buffers. This conversion would enable a highly efficient reconfigurable net-
tunable technique employs high-extinction-ratio and low-additive- work switching architecture with wavelength reuse and con-
noise DFG. tention resolution.

Index Terms—Difference frequency generation, fiber Bragg WO reported techniques for implementing all-optical TSI in-
gratings, optical buffer, time-slot interchange, time-to-wavelength clude the following: 1) using fixed delay lines as optical-time

mapping, wavelength conversion. buffers and semiconductor optical amplifiers (SOA) as gates to
perform TSI with a 1.6-ns guard time at 125 MHz [2], and 2)
I. INTRODUCTION using lithium-niobate space switches followed by fixed delay

] _ lines to perform TSI on a 29-Mb/s signal [3]. The SOA used in
T MAY BE CRITICAL for future networks to provide addi- {he first method has limited switching speed, generates crosstalk
tional switching functionality in the optical physical layer toye to a limited extinction ratio, and adds noise to the signal
ensure high-speed and high-throughput performance. Typicalysough amplified spontaneous emission. The space switches
switching is performed in one of the following domains: timeyseq in the second method generate signal crosstalk and have
wavelength, or space. As traffic grows, the network may requiggajapility problems. Crosstalk is a particularly serious problem
the use of more than one of these switching domains conciytime switching because coherent effects are generated, which
rently in order to meet the increasing demand. Improved fleX}yay induce large power penalties and bit-error-rate floors [4].
bility, throughput, and robustness would, thus, be achieved in fU'AII—opticaI wavelength conversion has been accomplished by
ture heterogeneous networks that combine wavelength-, timgsyeral methods, including the following: cross-gain modula-
and space-division switching for data traffic. tion [5], cross-phase modulation [6], and four-wave mixing [7].

In a network that includes elements of time-division multifjowever, these methods generally use an SOA as their wave-
plexing (TDM), the time slot of each bit defines its output poffength-shifting medium, which typically gives rise to at least one
at each switching node. This makes time-slot interchange (T3pthe following disadvantages: 1) limited conversion speed; 2)
the most commonly used method of switching in the time d@mjted wavelength range; 3) additive noise; 4) limited output
main [1]. Time-slot-interchange is achieved by shifting a givegytinction ratio; 5) induced chirp; and 6) narrow dynamic range
bit from one time slot into a different one, thereby changing itgf input power.

destination. This can be readily accomplished in the electronicyye gemonstrate the combination of all-optical TSI and wave-

. . ) Iq(ngth conversion of a 2.5-Gb/s data signal to achieve a reconfig-
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tive spontaneous emission noise; 2) negligible chirp; 3) sim Time slot mterchange and wavelongth conversion module

ilar up- and down-conversion efficiency; 4) limited crosstalk

and high extinction ratio at the output; and 5) largé¢erahertz Fig- 2. Experimental setup.

bandwidth [8]. Furthermore, tunable FBG optical buffers pro-

vide better scalability and are more reconfigurable than convarersion efficiency is-16 dB, however this can be increased by

tional buffers based on fiber delay lines. reducing the fiber pigtailing loss and increasing the pump power
[9]. Recent advances in waveguide technology have resulted in
II. EXPERIMENTAL SETUP much higher normalized conversion efficiencies [10], such that

Fig. 1 sh h | di f1h . ¢ 0-dB conversion should be obtained with only 16-dBm pump
. M9.1s ows the conc_eptua lagram o the Swapping ot a5, ver. present at the output of the first wavelength converter
jacent time slots. In the first wavelength/time switch, odd nu

. ) ire the original signal at 1555 nm, the pump at 1550 nm, and
bered time slots are selected and copied figrto A, by means fhe newly greatedgodd—numbered time s?ots gt 1545 nm.

of DFG. A wavelength-dependent matrix of discretely tunable The FBGs provide a delay of two bit times (800 ps) for the

time-slot delays, as defined by the tunable set Of_ FBGs, intri’545—nm signal with respect to the 1555-nm signal, and filter out
duces a two-bit delay betweety and A;. By applying stress

g ; . . the pump at 1550 nm. The wavelength-dependent delays pro-
on FBGs, it is possible to tune their reflecting wavelengthgiqe by the FBGs form our optical time buffers. By tuning the
Using this technique, relative timing of the bit streams can

h q . bl ical time buffer. | _gratings, wavelengths can be reflected from different gratings,
changed, creating a tunable optical time bufer. In progressi sulting in discrete time delays from the FBG array structure.
the second _vvavelength/nme switch selects ar!d copies the eVef, e second wavelength converter, the high level of the rect-
nulrtr)bered ltllmetlslolt?_é(l) thz alrea(ljy dteriayqdblt s_tream, re- angular pulse train is time synchronized to the even numbered
SUV\'/ng 'nh"’.‘ —opét;,:aG anl wat\:e eng gonversrl‘on. Iti e slots. The second device works under the same operating
€ achieve wave .eng.t conversion wit an anneali@g,gitions as the first, in that it copies only the even numbered
proton exchanged waveguide in periodically poled lithium-nig;.,o g1ots to 1545 nm. After the second device, a bandpass filter

bate. The device employs a cascaded second-order nonlinearaq|3545 nm is used to filter out the pump (1550 nm) and the orig-

i 2)...(2 . .
tical processy ®):x(, whe_re a pump and signal wave (both Mhal signal (1555 nm), leaving only the wavelength-converted
the 1550—nm band) are mixed to create an output, whose waye signal. We note that the®:® process of our wave-
length is}‘converted ~ 2)\1)ump - )\signal- Second harmonic gen'

length converters results in a very high extinction ratio for our

eration .(SHG) result§ in conversion_ of the pump to 'ghe SEcoq e/wavelength switch. Thus, the crosstalk between the non-
harmonic2A,ump. This SHG wave simultaneously mixes with

. selected even-numbered time slots from the first DFG and the
the S|gr_1al through DFG to generate the OUtplNFa’gve“ed' The selected even-numbered time slots from the second DFG is min-
nearly instantaneous nature of the parametric processes re;ngl.
in a signal bandwidth of several terahertz. The conversion effi-
ciency is proportional to the square of the pump power. It should
be emphasized, therefore, that any increase in the pump power
translates into twice as much improvement in conversion effi- Fig. 3 shows the waveforms at the various stages of time
ciency, i.e. 1 dB into 2 dB. switching and buffering in our system. Odd numbered time

Our experimental setup is shown in Fig. 2. A 2.5-Gb/s bglots are selected and copied at the first wavelength con-
stream at 1555 nm is input to the TSl/wavelength conversierrter/time switch, and are delayed by the optical-buffer FBG
module. Inside the module, the19-dBm DFG pump is gen- array. Fig. 3(a) shows the incoming bit stream (1555 nm)
erated using an external cavity laser at 1550 nm that is moduith odd and even numbered time slots. The rectangular pulse
lated by a 2.5-Gb/s rectangular pulse train. A wavelength-ditrain at 1550 nm [see Fig. 3(b)] is the pump input to the first
sion-multiplexing (WDM) coupler is used to combine the pummavelength converter. The high levels are time synchronized
signal and the incoming bit stream. It also filters out the AS®® the odd numbered time slots, selecting and copying them to
noise of the high-power erbium-doped fiber amplifier (EDFA)1545 nm. Fig. 3(c) shows the newly created 1545-nm bit stream
The “ON" bits of the rectangular pulse train (i.e., the high levelsyith odd numbered time slots only. The even numbered time
are time synchronized with the odd numbered data-bit time slaigts are not selected for wavelength conversion because they
at the input to the first wavelength converter. When the pungpe aligned with the low “OFF” level of the 1550-nm pump.
power is high, a duplicate of the 1555-nm signal is producedfig. 3(d) shows the 1545-nm signal after the FBG grating array,
1545 nm, effectively selecting and copying the bits in the odiklayed by two bit times with respect to the 1555-nm original
numbered time slots to a new wavelength. Our wavelength caignal.

I1l. RESULTS AND DISCUSSION
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Fig. 5. BER curves for back-to-back and after TSI and
Fig. 3. (a) Incoming bit stream at 1555 nm., (b) Rectangular pulse train (pumpavelength-conversion module.

at 1550 nm, copying odd numbered time slots to 1545 nm. (c) 1545-nm DFG

signal after first PPLN device. (d) 1545-nm signal after the FBG array, two bit

time delayed with respect to 1555-nm signal.
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Fig. 5 shows the BER curves for the signals before and after
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the time/wavelength switch. Our technique induced-dB
power penalty. This penalty is primarily due to coherent
crosstalk from poor extinction ratio of our external modulator
driving the pump laser, and low wavelength-conversion effi-
ciency and various insertion losses. The first problem can be
mitigated by increasing the extinction ratio of the selecting
pulse by>30 dB. This will result in time-switching extinction
ratios in excess of 50 dB, effectively eliminating crosstalk
interference. As discussed above, the problem of low conver-
sion efficiency can be eliminated through the use of advnaced
waveguide designs.
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Fig. 4. (@) 1555-nm input signal to second PPLN. (b) 1545-nm input signal
to second PPLN. (c) rectangular pulse train (pump) at 1550 nm, copying even
numbered time slots to 1545 nm. (d) 1545-nm signal output from second PPLNI4]
device, time slots interchanged and wavelength converted.
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