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Abstract

Optical signal processing is becoming an attractive technology for communication

applications. Many important optical signal-processing functions have been demon-

strated in devices based on periodically poled lithium niobate (PPLN) waveguides.

They are among the fastest and most efficient nonlinear optical devices available

today.

The work described in this dissertation further extends the functionality of PPLN

optical signal processors by lifting two limitations long imposed on such devices: A

broadband quasi-group-velocity-matched scheme is invented to obviate the bandwidth-

efficiency trade-off inherent in optical frequency mixers, and several techniques are

developed to modulate the nonlinear interaction amplitude and thereby versatilely

shape the transfer function of an optical signal processor.

The ability of optical signal processors to process high speed data beyond what

is possible with electronics has been applied to optical time-division multiplexing

(OTDM), a technique complementary to wavelength-division multiplexing. In this

dissertation, multiple functions are tailored and monolithically integrated to make a

PPLN-based optical time-division multiplexer (OTDM-MUX) capable of 160-Gbit/s

operation. It is successfully characterized using ultrafast optical techniques. Com-

pared with previously demonstrated OTDM-MUXs, besides the advantages of a

monolithic layout, the PPLN MUX has higher efficiency while keeping the crosstalk

low.

Beyond discrete functions, engineered nonlinear optical and optical circuit com-

ponents have opened the door to a new level of versatility of PPLN-based optical

signal-processing devices.
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Chapter 1

Introduction

1.1 Overview

The explosive growth in data traffic strongly motivates more efficient and economical

utilization of the bandwidth of fiber-optic networks. The transmission and man-

agement of high capacity data is creating enormous demands for components with

signal-processing capabilities beyond those currently available. While optoelectronic

components (with speed limitation of 40 Gbit/s currently) will remain important in

the future, all-optical techniques may be useful to fully exploit the transmission band-

width of optical fibers (exceeding 3 Tbit/s) to allow for new services such as digital

television and the next-generation Internet. [1] All-optical signal processing replaces

high-speed electronics with all-optical components and makes the signal conversions

between the optical and electrical domain unnecessary. Optical signal processors

based on periodically poled lithium niobate (PPLN) have the advantages of high

efficiency (>3000%/W), high speed (>1 THz of modulation bandwidth), preserva-

tion of phase information, large wavelength-conversion bandwidth (> 70 nm), large

dynamic range (>50 dB), and quantum-limited spontaneous emmision (parametric

fluorescence) noise. [2]

At the center of optical signal-processing devices is an optical frequency (OF)

mixer, an optical analogue of the radio-frequency (RF) mixers commonly used in

electronics. (Figure 1.1) OF mixers produce a frequency-shifted output by mixing

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: (a) Radio frequency mixer and (b) optical frequency mixer. In both
mixers, the output is generated through frequency mixing of the signal and a local
oscillator. (Adapted from Ref. [4].)

SH of LO LO

SHG
DFG

Signal Output

����

Cascaded SHG/DFG

Output

LO

DFG

Signal

����

DFG

Figure 1.2: Nonlinear optical processes in an OF mixer. Left: the output is the dif-
ference frequency between the local oscillator and signal; right: cascaded SHG/DFG,
the signal mixes with frequency-doubled local oscillator through DFG.
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the input signal with a local oscillator. Standard OF mixers are based on difference-

frequency generation (DFG) of a first-harmonic (FH) signal (around 1550 nm) and

a second-harmonic (SH) local oscillator (around 775 nm), or on cascaded second-

harmonic-generation(SHG)/DFG where the SH of a 1.5-µm local oscillator is the

pump of the DFG. [3] (Figure 1.2)

During a decade of development, a variety of signal-processing functions have been

demonstrated using OF mixers based on PPLN waveguides. [4] To name a few, signal

manipulations such as wavelength conversion, [5, 6, 7] phase conjugation, [8, 9] pulse

shaping, [10] optical sampling, [11, 12] gated mixing, [13] time-slot interchange, [14]

and header recognition [15] can now be performed in the optical domain.

Notwithstanding all these exciting developments, two constraints have long limited

the application of PPLN optical signal-processing devices:

The bandwidth/efficiency trade-off

On the one hand, the efficiency of an OF mixer is proportional to the square (for

single step process) or the fourth power (for cascaded processes) of the interaction

length, L. [6] On the other hand, while the signal bandwidth for a typical config-

uration is broader than the bandwidth of an Erbium-doped fiber amplifier (EDFA),

[4] the local oscillator (pump) bandwidth is limited by the group-velocity mismatch

(GVM) between the interacting FH and SH waves. The slower SH pump pulse walks

off the FH pulse that it is supposed to interact with. In other devices where SHG

is involved (a cascaded OF mixer for example), the generated SH pulse is broad-

ened due to its smaller group velocity and eventually becomes incompatible with the

system’s bit rate. (Figure 1.3) In either case, the pump bandwidth of the device

scales inversely with L. The group-delay difference between FH and SH of a typical

5-cm-long PPLN device is approximately 18 ps, while one time slot in a 160-Gbit/s

system is only 6.25 ps and the pulse width is usually even shorter. In order to allow

for high bit rate, one needs to use a short device and hence sacrifice efficiency. This

bandwidth/efficiency trade-off is inherent in optical signal-processing devices based

on parametric interactions.

In Chapter 2, we mitigate this trade-off with a quasi-group-velocity-matched
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FH

SH

Figure 1.3: Group-velocity mismatch between the FH and SH light. The SH lags the
FH as it is generated, becoming a broadened pulse.

(QGVM) structure. It is a demonstration of how waveguide-based integrated-optic

structures can extend the functionality of optical signal-processing devices.

Fixed nonlinear interaction amplitude

In digital signal processing, a window function can be conveniently applied to

alter the signal spectrum. For an OF mixer, however, the frequency-domain response

(transfer function) is largely determined by material dispersion: a rectangular window

function and hence a sinc transfer function is intrinsic to a device with a uniform

nonlinear response along its entire length. The relatively large and slowly-decaying

sidelobes of a sinc curve can cause crosstalk in some applications. (Figure 1.4) Until

recently, a technique to versatilely shape the transfer function has not been available.

Fixed nonlinearity

Rectangular window function

Sinc transfer function

Crosstalk

����

Figure 1.4: A uniform QPM grating has an intrinsic sinc transfer function, causing
crosstalk in frequency conversion.

The root of the difficulty lies in the physics of OF mixers. The frequency-domain
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response is determined by the Fourier transform of the spatial distribution of nonlinear

interaction amplitude. With the quasi-phasematching (QPM) technique, the local

nonlinear coefficient takes the material value with either a plus or a minus sign:

any value in between those limits is not readily available. A technique to obtain

continuously adjustable local nonlinear interaction amplitude is the key to shaping

the transfer function.

The ability to shape the transfer function is essential in optical signal processing,

as many signal-processing functions depend on the ability to alter the signal spectrum

in a controlled way: arbitrary spectral shaping enables many more signal-processing

possibilities. In Chapter 3 we develop several techniques to modulate the local am-

plitude of nonlinear interactions, and experimentally prove their effectiveness in one

specific application that is important in optical communications – suppressing the

transfer function sidelobes to minimize interchannel crosstalk. With this we demon-

strate how QPM engineering has opened the door to a new level of versatility of

optical signal-processing devices.

The transfer function is so fundamental in optical signal processing that its dis-

tortion due to fabrication errors calls for further study. In Appendix A we present an

analytical study of the tuning behavior of QPM devices in the context of non-ideal

waveguides. Together with Ref. [16], which treated QPM domain errors, the results

constitute a complete error analysis of waveguide-based QPM devices. They are use-

ful to establish fabrication tolerances in practical applications and as diagnostic tools

for analyzing experimental results.

The ability of optical signal processors to process high speed data has been applied

to optical time-division multiplexing (OTDM), a technique that is complementary to

wavelength-division multiplexing (WDM). In an OTDM system, multiple channels at

low bit rate are multiplexed into a high-bit-rate stream where pulses from different

channels occupy different time slots. (Figure 1.5) By combining WDM and OTDM,

point-to-point optical links with data capacities close to the theoretical maximum

can be designed. Furthermore, OTDM systems have several advantages over WDM

systems such as high bit-rate-to-bandwidth ratio, natural accommodation of higher
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(b)
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Figure 1.5: Optical fiber transmission systems: (a) single channel; (b) WDM; (c)
TDM. (Adapted from Ref. [3].)

bit-rate payloads, and ease of supervising the multiplexed line. [17]

Key to an OTDM system is an OTDM multiplexer (MUX) that produces stable

time-sequential signals from multiple data channels. All-optical 160-Gbit/s OTDM-

MUXs were previously demonstrated using PPLN waveguides integrated with a planar

lightwave circuit (PLC). [18, 19] The hybrid scheme integrated on one PPLN chip

and two PLC chips a number of PPLN and silica-on-silicon waveguides, and used

a topology where most of the light was wasted in the couplers. In Chapter 4, we

describe a monolithic MUX capable of 160-Gbit/s operation fabricated entirely on a

single PPLN substrate. By tailoring and integrating multiple optical signal-processing

functions, we are able to build a MUX using one PPLN waveguide without the ad-

ditional silica-on-silicon circuitry, hence achieving a simpler and monolithic layout

and higher efficiency while keeping crosstalk low. This is arguably one of the more

sophisticated all-optical signal-processing devices ever demonstrated. It exemplifies

the integrated operation of optical signal processing in PPLN beyond simple discrete

functions.
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This dissertation is built on the research of previous members in the Fejer group

at Stanford University. In particular, the theory of short-pulse frequency conversion,

the QPM technique, and a toolbox of optical circuit components are indispensable to

the work in later chapters. We shall first review each of them as the theoretical and

technical foundation in the remainder of this chapter.

1.2 Foundations of This Dissertation

1.2.1 Frequency conversion of short optical pulses

This section re-derives the theory of SHG and DFG involving short optical pulses.

In the frequency domain, a “short” pulse has a finite bandwidth and cannot be

approximated as a delta function. In the time domain, GVM must be considered.

Unless otherwise pointed out, group-velocity dispersion (GVD) of the pulses discussed

in this dissertation is negligible. This section follows closely the analysis in Ref. [20],

where more generalized theory including higher-order dispersion was also presented.

Frequency-domain slowly-varying envelope equation

Assuming plane-wave interactions with a propagation direction z, and a lossless

medium, the frequency-domain scalar wave equation can be obtained from Maxwell’s

equations as [10]

∂2

∂z2
Ê(z, ω) + k2(ω)Ê(z, ω) = −µ0ω

2P̂NL(z, ω), (1.1)

where Ê(z, ω) is the Fourier transform of the electrical field, P̂NL(z, ω) is the electric

nonlinear polarization at frequency ω, and the wavevector k(ω) in the medium is

related to the refractive index n(ω) and the speed of light in vacuum, c, by k(ω) =

ωn(ω)/c. µ0 is the permeability of free space.

We now restrict this analysis to nonlinear interactions between fields with band-

widths small compared to the optical carrier frequency, and define a frequency-domain
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envelope, Â(z, Ω), such that Ê(z, ω) can be written in the form

Ê(z, ω) = γÂ(z, Ω)e−ik(ω0+Ω)z, (1.2)

where Ω = ω − ω0 is the frequency detuning from a reference carrier frequency ω0.

γ =
√

2
ncε0

, where ε0 is the permittivity of free space. This choice of normalization

makes
∣∣∣Â∣∣∣2 equal to the spectral intensity of the corresponding wave. Note that this

normalization is different from that in Ref. [20]. Substituting Eq.(1.2) into Eq.(1.1)

and assuming a slowly-varying envelope, i.e.
∣∣∣∂2Â/∂z2

∣∣∣ <<
∣∣∣k(ω)(∂Â/∂z)

∣∣∣, we find

∂

∂z
Â(z, Ω) = −i

µ0ω
2

2γk(ω)
P̂NL(z, ω)eik(ω0+Ω)z. (1.3)

Physically, we are assuming that Â(z, Ω) changes negligibly over the distance of one

optical wavelength.

Output SH field and SHG transfer function

Assuming an undepleted pump, the coupled envelope equations that govern the

SHG process are
∂

∂z
Â1(z, Ω) = 0 (1.4)

∂

∂z
Â2(z, Ω) = −i

µ0ω
2
2

2γ2k2
P̂NL(z, Ω)eik(ω2+Ω)z, (1.5)

where Ω = ω − ω2 is the detuning from the carrier frequency of the SH pulse, ω2.

Here and in the remainder of this section we use the subscript 1 to denote the FH

and the subscript 2 to denote the SH. The nonlinear polarization spectrum, which

drives the SH conversion, can be written as

P̂NL(z, Ω) = ε0γ
2
1d(z)

∫ ∞

−∞
Â1(z, Ω

′)Â1(z, Ω − Ω′)e−i[k(ω1+Ω′)+k(ω1+Ω−Ω′)]z dΩ′, (1.6)

where d(z) is the spatial distribution of nonlinear coefficient.

As is well-known from the literature, [20, 21] in undepleted-pump SHG, with or

without dispersive broadening, the FH frequency-domain envelope is independent of
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z, and the solution to Eq.(1.4) is

Â1(z, Ω) = Â1(Ω), (1.7)

where Â1(Ω) ≡ Â1(z = 0, Ω). With Eqs. (1.5), (1.6), and (1.7) we obtain the envelope

of the SH pulse after an interaction length L as

Â2(L, Ω) =
∫ ∞

−∞
Â1(Ω

′)Â1(Ω − Ω′)d̂[∆k(Ω, Ω′)] dΩ′. (1.8)

d̂(∆k) is proportional to the spatial Fourier transform of the nonlinear coefficient

d(z):

d̂(∆k) = −iρ
∫ ∞

−∞
d(z)e−i∆kz dz, (1.9)

where ρ =
√

8π2

n2
1n2cε0λ2

1
. The limits of the integral are extended from [-L/2,L/2] to

(−∞,∞) by defining d(z) ≡ 0 outside of the interaction length L. The wavevector

mismatch is defined as

∆k(Ω, Ω′) = k(ω2 + Ω) − k(ω1 + Ω′) − k(ω1 + Ω − Ω′). (1.10)

Under the assumptions that GVD and higher-oder dispersion are negligible, ∆k be-

comes independent of Ω′, or explicitly ∆k = ∆k0 + δνΩ, where ∆k0 = k2 − 2k1

is the carrier wavevector mismatch, and δν = 1/u1 − 1/u2 is the GVM parameter

with the group velocities ui = [dk(ω)/dω]−1|ω=ωi
. Hence d̂[∆k(Ω, Ω′)] can be factored

out from the integral in Eq.(1.8) and the output SH envelope reduces to a simpler

transfer-function result:

Â2(L, Ω) = D̂SHG(Ω)Â2
1(Ω), (1.11)

where the transfer function:

D̂SHG(Ω) ≡ d̂(∆k0 + δνΩ) = −iρ
∫ ∞

−∞
d(z)e−i(∆k0+δνΩ)z dz, (1.12)
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and Â2
1(Ω) is the self-convolution of Â1(Ω):

Â2
1(Ω) =

∫ ∞

−∞
Â1(Ω

′)Â1(Ω − Ω′) dΩ′. (1.13)

The SHG transfer function relates the spectra of the FH and SH. It depends on

the dispersive properties of the medium and on the spatial distribution of nonlinear

coefficient but not on the input or output pulse parameters. It acts like a passive

filter on Â2
1(Ω). The narrowed spectrum due to filtering is equivalent to a broadened

pulse in the time domain. However, this nonlinear filter should be distinguished from

a bandpass filter acting directly on the FH spectrum, as Â2(L, Ω) is generated not

only from frequency doubling of Â1(Ω/2), but also from sum-frequency generation

(SFG) of frequency pairs Â1(Ω−Ω′) and Â1(Ω
′), for all Ω′. The resulting SH spectral

intensity can be higher than that of the FH.

Continuous-wave tuning curve and normalized efficiency

If the input FH field is a monochromatic wave with frequency ω1 + Ω1, the

frequency-domain envelope is a delta function:

Â1(Ω) = a1δ(Ω = Ω1). (1.14)

Substituting Eq.(1.14) into Eq.(1.11) we obtain

Â2(L, Ω = 2Ω1) = a2
1D̂SHG(Ω). (1.15)

In a homogeneous medium, d(z) = d0rect(z/L), where d0 is the nonlinear coefficient

of the material for the polarizations of the interacting waves, and rect(x) = 1 for

|x| ≤ 1/2 and rect(x) = 0 otherwise. We can calculate the integral in Eq.(1.12),

resulting in

Â2(L, Ω = 2Ω1) = ρLd0a
2
1sinc

[
∆k(Ω)L

2

]
, (1.16)

Assuming a cross-sectional overlap area S of the interacting waves, we get the relation
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between SH and FH powers:

P2(L, Ω = 2Ω1) = ηnorL
2P 2

1 sinc2

[
∆k(Ω)L

2

]
, (1.17)

where the normalized efficiency is

ηnor =
ρ2d2

0

S
=

8π2d2
0

n2
1n2cε0λ2

1S
. (1.18)

Tuning a constant-amplitude monochromatic wave over the frequency range of in-

terest and recording the SH power is a convenient way to experimentally determine∣∣∣D̂SHG(Ω)
∣∣∣2, which is also called the continuous-wave (CW) tuning curve.

The above plane-wave interaction results can be modified slightly to treat bulk

and guided-wave interactions. In bulk devices, where free space optical beams are

focused into the medium, the area S is an overlap of Gaussian profiles. The situation

where the beam is focused to a waist at the center of the crystal and the beam size at

the crystal edges is
√

2 times the waist is known as confocal focusing, which is close

to the optimum condition. In this case ηnor ∝ L. [22]

In guided-wave interactions, mixing takes place between discrete spatial eigen-

modes, and a small spot size can be maintained over the entire interaction length,

such that ηnor ∝ L2. Hence waveguide devices use device length much more efficiently

than bulk devices. Guide-wave interaction is further discussed in Section 1.2.3.

Output idler field and DFG transfer function

A similar theoretical treatment can be applied to DFG. [23] We consider the

process of idler generation from an undepleted pump and an unamplified signal, and

use subscript i, s, and p to denote the idler, signal, and pump, respectively. The

coupled envelope equations are

∂

∂z
Âi(z, Ω) = −i

µ0ω
2
i

2kiγi
P̂NL(z, Ω)eik(ωi+Ω)z (1.19)

∂

∂z
Âs(z, Ω) = 0 (1.20)
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∂

∂z
Âp(z, Ω) = 0, (1.21)

where Ω = ω − ωi is the detuning from the carrier frequency of the idler pulse, ωi.

The nonlinear polarization is

P̂NL(z, Ω) = 2ε0γsγpd(z)
∫ ∞

−∞
Â∗

s(z,−Ω + Ω′)Âp(z, Ω
′)e−i[k(ωs−Ω+Ω′)+k(ωp+Ω′)]z dΩ′.

(1.22)

Substituting the freely-propagating solutions of the signal and pump waves, i.e.

Âs,p(z, Ω) = Âs,p(Ω), into Eq.(1.22), we obtain the output idler envelope by inte-

grating Eq.(1.19) (again assuming d(z) = 0 outside the interaction length L):

Âi(L, Ω) = −iρi

∫ ∞

−∞
d(z) dz

∫ ∞

−∞
dΩ′Â∗

s(Ω
′ − Ω)Âp(Ω

′)e−i∆k(Ω,Ω′)z, (1.23)

where ρi = 2πγsγp/(λini), and the wavevector mismatch

∆k(Ω, Ω′) = k(ωp + Ω′) − k(ωi + Ω) − k(ωs + Ω′ − Ω). (1.24)

In Ref. [20], the special case of a CW pump was discussed: A transfer-function

simplification exists, and Eq.(1.23) describes the spectral inversion of the signal, a

function useful for correction of dispersion and nonlinear effects in fiber communica-

tion systems. [8] Here we discuss another special case useful in gated OF mixers.

Assume the signal is a CW monochromatic wave at the reference carrier frequency

ωs, i.e. its frequency-domain envelope is a delta function

Âs = asδ(Ω = 0), (1.25)

We thus have an Ω′-independent ∆k and Eq.(1.23) becomes

Âi(L, Ω) = D̂DFG(Ω)Âp(Ω)as, (1.26)

where the DFG transfer function

D̂DFG(Ω) = −iρi

∫ ∞

−∞
d(z)e−i∆k(Ω)z dz, (1.27)
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and

∆k(Ω) = k(ωp + Ω) − k(ωi + Ω) − k(ωs), (1.28)

where the carrier frequencies are related by ωi = ωp −ωs. Under the assumption that

Ω << ωi,s,p we can perform a Taylor expansion on ∆k(Ω). Ignoring GVD and higher-

order dispersion, we obtain ∆k(Ω) = ∆k0 +δνpiΩ, where ∆k0 = k(ωp)−k(ωs)−k(ωi)

is the carrier wavevector mismatch and δνpi is the pump-idler GVM parameter defined

by δνpi = 1/ui − 1/up, where ui and up are the group velocities of the idler and the

pump pulses, respectively.

D̂DFG has the form of a linear filter in the frequency domain. Aside from different

carrier frequencies, the idler spectrum is a copy of the filtered pump spectrum. We

note that the result of Eq.(1.23) still holds if instead of a monochromatic signal, a

signal wave with sufficiently narrow spectrum is used. In the time domain it corre-

sponds to a long signal pulse, more precisely τs >> |δνps|L. Comparing the DFG

transfer function with the SHG transfer function of the same frequency-conversion

device, we note that for near-degenerate interactions, i.e. ωi ≈ ωs ≈ ω1 (ω1 is the FH

frequency in SHG), they are good approximation of each other.

1.2.2 Quasi-phasematching

In a dispersive medium, the refractive indices at different frequencies are generally

different, resulting in non-zero ∆k in Eqs. (1.12) and (1.27). With this wavevector

mismatch, the interacting waves go out of phase after propagating a distance Lc =

π/∆k, or one coherence length. The frequency-mixed output generated over one

coherence length converts back to the input wavelengths during the next coherence

length. Quasi-phasematching compensates for phase mismatch by changing the sign

of the nonlinear coefficient every coherence length. This periodic reversal preserves

the direction of energy flow from the input waves to the output waves, ensuring that

the output increases monotonically with propagation distance. [16] (Figure 1.6)

The periodic variation of the nonlinear coefficient produced by a QPM grating
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Figure 1.6: SH power in the propagation direction under (a) perfectly phasematched,
(b) non-phasematched, and (c) quasi-phasematched conditions. Quasi-phasematching
ensures monotonic growth of SH power albeit with a reduced efficiency compared to
perfect phasematching.
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with period Λg can be represented by the following Fourier series:

d(z) = d0

∞∑
m=−∞

Gmeimkgz (1.29)

where kg = 2π/Λg, and for a uniform grating the Fourier coefficients are Gm =
2

mπ
sin(mπD), where D is duty cycle. A first-order QPM grating with 50% duty cycle

and length L is represented by

d(z) =
2

π
d0e

ikgzrect
(

z

L

)
. (1.30)

We define dQPM ≡ 2d0/π for the rest of this dissertation. Substituting Eq.(1.30)

into Eq.(1.12), we find that compared with a homogeneous medium, a first-order

QPM grating has an effective nonlinear coefficient dQPM and shifts the wavevector

mismatch to ∆k′ = ∆k − kg. If kg is chosen to phasematch the carrier frequencies,

then ∆k′ = δνΩ, where δν is the previously defined GVM parameter. Eqs. (1.16)

through (1.18) take the same functional form with the re-defined nonlinear coefficient

dQPM and wavevector mismatch ∆k′.

Lithographically
Defined

Electrode
Pattern

LiNbO3
Wafer

3 inch

+

High Voltage
11 kV

500 µm

+

-

PPLN
(full wafer)

+- +- +- +- +- +- +- +-

Λ=2Lc

Figure 1.7: Whole-wafer electric-field poling of lithium niobate.

QPM structures are most commonly obtained by periodic poling of ferroelectric
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crystals like LiNbO3, LiTaO3, and KTP. The standard electric-field-poling technique

for congruent lithium niobate is described in Refs. [22, 24] and the procedures are

shown in Figure 1.7. The principle is that the spontaneous polarization in a ferroelec-

tric material can be reversed under a sufficiently large electric field. Since the sign of

the nonlinear susceptibility changes with the orientation of the ferroelectric domains,

patterning a periodic array of domains creates a periodic grating in the sign of the

nonlinear susceptibility. All QPM devices in this dissertation were fabricated using

this method. A detailed theoretical treatment of QPM can be found in Ref. [16].

1.2.3 Guided-wave interactions and a toolbox of optical cir-

cuit components

Integrated optical circuits compatible with PPLN have further extended the func-

tionality of optical signal processors. They are based on guided-wave interactions

and the basic building blocks include reverse-proton-exchange (RPE) waveguides,

small-radius bends, wavelength-selective directional couplers, and Y-junctions. We

review their basics below.

Guided-wave interactions

For simplicity, we assume that only a single waveguide mode participates in the

interaction at each wavelength. Thus Eq.(1.2) is modified to

Ê(x, y, z, ω) = γÂ(z, Ω)e(x, y)e−ik(ω0+Ω)z, (1.31)

where e(x, y) is the normalized transverse field profile and is defined by

∫ ∞

−∞

∫ ∞

−∞
e2(x, y) dx dy = 1. (1.32)

The above normalization makes
∣∣∣Â∣∣∣2 equal to the power spectral density of the cor-

responding mode.

For guided-wave nonlinear interactions, the local amplitude of the nonlinear cou-

pling depends on an overlap integral of the interacting waveguide modes with the
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spatially varying nonlinear coefficient, d(x, y, z). If d(x, y, z) is periodic in z, as would

be the case for a simple QPM interaction, it can be written as

d(x, y, z) = d0

∞∑
m=−∞

Gm(x, y)eimkgz, (1.33)

where the Fourier coefficient Gm(x, y) is given by

Gm(x, y) =
1

d0Λg

∫ Λg/2

−Λg/2
d(x, y, z)e−imkgz dz. (1.34)

In this case the overlap integral is given by [25, 26]

ϑm =
∫ ∞

−∞

∫ ∞

−∞
Gm(x, y)e2

1(x, y)e∗2(x, y) dx dy. (1.35)

e1(x, y) and e2(x, y) are normalized eigenmodes of the waveguide at the FH and

SH wavelengths, both calculable using the model in Ref. [27] and measurable in

experiments.

If d(x, y, z) has an additional variation with respect to z that is slow enough that

a local Fourier coefficient Gm(x, y, z) can reasonably be defined, we can calculate a

local overlap integral ϑm(z) by replacing Gm(x, y) in Eq.(1.35) with Gm(x, y, z). In

a PPLN device, the periodicity comes from the QPM grating with period Λg, while

the slowly-varying component can be a result of duty-cycle modulation or transverse

patterning of the grating. The application of the latter is discussed in Chapter 3.

For the purposes of this dissertation, we assume that the power of the FH wave

can vary along the propagation direction z with a known function P1(z), with the

variation controlled, for example, with a directional coupler. We can then define a

local nonlinear coupling strength κm(z), where

κm(z) = ϑm(z)P1(z). (1.36)
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With this definition, the SH output power for an interaction with mth-order quasi-

phasematching, P2m, in the low conversion and lossless limit, is given by

P2m =
8π2d2

0

n2
1n2cε0λ2

1

∣∣∣∣∣
∫ L

0
κm(z)e−i∆k′

mz dz

∣∣∣∣∣
2

, (1.37)

where ∆k′
m = k2 − 2k1 − mkg.

RPE waveguides, mode filters, and tapers

The RPE process has been an important technique for fabricating low-loss optical

waveguides in LiNbO3. RPE buries annealed-proton-exchange (APE) waveguides [28]

beneath the surface of the substrate and improves the mode overlap of the interacting

waves. [2] An empirical model has recently been developed to accurately calculate the

refractive-index profile in RPE waveguides based on the waveguide width (mask open-

ing), proton-exchange depth, and the annealing and reverse-proton-exchange times.

[27] The fabrication procedures for RPE waveguides are illustrated in Figure 1.8. The

conventional RPE recipe is 1.84-µm initial proton-exchange depth, 23-hr annealing

at 310 ◦C, 26-hr reverse-proton-exchange at 300.5 ◦C.

H+

Li+ Proton Exchange
(T=171oC in Benzoic Acid)

Annealing
(T=312oC in air)

Lithographically Defined WG pattern

Sputtered
SiO2 Mask

+ - + - + -
+ - + - + -

Reverse Proton Exchange
(T=300oC in LiNO3:KNO3:NaNO3)

Li+
H+

+ - + - + -

Figure 1.8: Fabrication of RPE waveguides.

A typical RPE waveguide (shown in Figure 1.9) starts with a 3.5-µm-wide mode-

filter, which supports only the TM00 mode. The wave remains TM00 through an
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x
y

x

z

Figure 1.9: Schematic of a straight waveguide with mode filter and taper (mode
pictures rotated by 90 ◦).

adiabatic taper into the straight section with a 7.5-µm width, which supports several

transverse modes at 1.5-µm wavelength and is the width which is noncritical for

phasematching SHG around 1.5 µm. The noncritical phasematching width is the one

for which the FH-SH wavevector mismatch does not have first-order dependence on

the waveguide width, and hence the tolerance on fabrication error is the largest. [25]

When efficient use of the length of the wafer is of concern, the taper width is designed

to grow quadratically in the propagation direction, reducing the necessary length of

the taper while preserving its adiabatic property.

With the tight confinement of the interacting waves, good mode overlap, ηnor is

approximately 100%/W/cm2 in a typical RPE PPLN waveguide. [2]

Deep exchange waveguides and small radius bends

Tight bends with small radii are desired in optical circuits for denser integration.

The limiting factor is the increasing radiation loss with smaller bend radii. For

conventional RPE waveguides the smallest cosine-bend radius with negligible bending

loss is 4 mm. With a larger initial exchange depth of 2.39 µm, the smallest radius

for cosine bends with negligible bending loss reduces to 1 mm. The smaller bending

loss results from an increased effective refractive index and reduced mode size in the

dimension of the waveguide width. Correspondingly the noncritical waveguide width

becomes 6.5 µm.

The 2.39-µm proton-exchange depth is optimized for a balance between the smaller

bend loss and the higher propagation loss associated with a higher proton dose. The
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propagation loss is <0.4 dB/cm, compared to <0.1 dB/cm for conventional RPE

waveguides.

A circular bend has a constant curvature over the entire length and is much

lossier than a cosine bend with the same minimum bend radius. We experimentally

determined the circular-bend radius with negligible bending loss to be 2 mm with the

deep exchange recipe. U-turns with such a small bend radius are used in applications

such as the single-chip OTDM-MUX in Chapter 4.

Wavelength-selective directional couplers

Many integrated optical circuits require the transfer of optical power from one

waveguide to another. According to basic coupled-mode theory, this transfer can be

accomplished by placing two parallel waveguides close enough so that their modes

begin to overlap. If the two waveguides are identical, optical power transfers from

one waveguide to the other according to

P (z) = P0 sin2
(

πL

2Ldc

)
(1.38)

Here Ldc is the coupling length for complete power transfer, which can be estimated by

Ldc = (λ/2)/(n1−n2), where n1 and n2 are the effective refractive indices for the two

lowest-order eigenmodes of the combined structure. [29] Wavelength-selective filters

and combiners can be implemented by taking advantage of the different coupling

length for different wavelengths. Although we can use the waveguide model to obtain

the eigenmodes for a directional coupler and estimate the coupling length, >20%

error may exist in such estimation. In practice we empirically determine the length

of a directional coupler for a chosen spacing between the two waveguides. For a

typical design using the noncritical waveguide width, 3-µm separation and 1550-nm

wavelength, Ldc is 3 mm with conventional RPE and 1.8 mm with deep RPE. For

both these designs, the coupling at the SH wavelength is below 1%.

In practice, for the noncritical phasematching waveguide widths, Ldc is sensitive

to perturbations in waveguide separation caused by the photolithographic process. A

“non-critical” coupler has been developed using narrower RPE waveguides. [30]
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Mode multiplexers and demultiplexers

While not directly used in this dissertation, multiplexing higher-order waveguide

modes provides a new solution to the problem of distinguishing and spatially sepa-

rating the interacting waves in OF mixers. [31, 32] Asymmetric Y-junctions that are

compatible with standard PPLN devices have been demonstrated as mode multiplex-

ers and demultiplexers with a contrast exceeding 30 dB. [33]

TM00 mode of the 3-
µm-wide and 5-µm-
wide waveguides.

TM00 and TM10 modes of
an 8-µm-wide waveguide.

x
y

x
z

Figure 1.10: Mode evolution in an adiabatic asymmetric Y-junction (mode pictures
rotated by 90 ◦).

In an adiabatic asymmetric Y-junction, the lowest-order modes of the wide and

narrow port evolves into the first and second modes of the combined structure, respec-

tively. Launching into the narrow “odd port” of an asymmetric Y-junction converts

a TM00 mode into a TM10 mode, while launching into the wider “even port” leaves

the mode unchanged. (Figure 1.10) Viewed in the opposite propagation direction,

the junction acts as a TM00-mode/TM10-mode demultiplexer. Shape optimization in

transverse and longitudinal directions has been studied to shorten the length of the

Y-junction while preserving mode contrast. [34]



Chapter 2

Quasi-group-velocity Matching

2.1 Introduction

Optical frequency mixers based on PPLN waveguides are among the highest speed

optical signal-processing devices available today. They have been used to demonstrate

many important all-optical signal-processing functions. With a CW local oscillator,

a standard C-band OF mixer has over 1 THz of conversion bandwidth. However,

to fully exploit the capacities of OF mixers as all-optical digital signal-processing

elements, [4] a gated mixer where the local oscillator consists of short optical pulses is

often used. Because pulses at different wavelengths propagate at different velocities,

the speed limit of a gated mixer is set by the group-velocity mismatch between the

interacting waves. [35] In SHG, as we have seen in Section 1.2.1, the SH spectrum is

limited by the finite transfer-function bandwidth of the mixer, and GVM results in

limited peak amplitude and longer pulse duration. In optical parametric generation

(OPG), GVM adversely affects the temporal properties of the output. [36] In optical

communications, at high enough bit rate, crosstalk can occur when the pump pulse

walks off the data into a neighboring time slot, as shown in Figure 2.1.

Given the required bandwidth of a device, GVM limits the maximum interaction

length for short pulses. On the other hand, the conversion efficiency is proportional to

the square of the interaction length in SHG and to the fourth power of that length in

cascaded processes. [6] For 3-ps pulses, typical of 160-Gbit/s systems, the maximum

22
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FH gate (pump)

FH data

generated SH of pump
Walk off into
adjacent time slot

FH signal

SHG

775 nm 1550 nm

DFG

crosstalk

Figure 2.1: An example of GVM causing crosstalk in a gated mixer through cascaded
SHG/DFG. The SH of the gate broadens and mixes with the data pulse in the next
time slot.

interaction length is about 8 mm in a PPLN OF mixer, only 1/6 that of a standard

device. It is thus very useful to have some group-velocity matched structure so that

the interaction length is no longer limited to one walk-off length, thereby obviating

the bandwidth/efficiency trade-off.

Group-velocity-matched SHG has been demonstrated in a variety of birefringent

phasematching and quasi-phasematching materials, but only at specific frequencies

determined by the dispersion of the nonlinear material. [37, 38, 39] For example, in

lithium niobate, the FH and SH group velocities are matched in a type 0 (e + e → e)

interaction only at a FH wavelength near 2.6 µm. [40] For PPLN devices, a technique

that makes use of spectral angular dispersion can provide GVM compensation for

arbitrary frequencies, but the non-collinear geometry limits its use to bulk devices.

[41]

The work in this chapter addresses the bandwidth/efficiency trade-off of waveguide-

based OF mixers. We demonstrate how integrated-optic structures can mitigate this

trade-off and extend the functionality of optical signal-processing devices. With a
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toolbox of optical circuit components, we are able to develop a broadband mono-

lithic quasi-group-velocity-matching (QGVM) scheme. The remainder of this chapter

is devoted to the design and demonstration of the QGVM scheme. Section 2.2 de-

scribes the theory and groundwork for device design, including the measurement of

the important GVM parameter. In Section 2.3 I present the experimental demon-

stration of a prototype device. This device can be iterated to further increase the

bandwidth/efficiency product until a length is reached where group-velocity disper-

sion becomes significant. This and other practical limitations are discussed in Section

2.4.

2.2 Theory and Groundwork

GVM is quantified by a single parameter δν = 1/u1−1/u2, defined as the difference in

reciprocal group velocities of the interacting waves. In SHG, the characteristic length

over which the FH and SH pulses walk off each other is called the group-velocity

walk-off length, i.e. Lgv = τ1/ |δν|, where τ1 is the FH pulse width; for interaction

length L > Lgv, the generated SH pulse is limited in peak amplitude, and its duration

becomes τ2 = |δν|L. If an FH and an SH pulse propagate a length L, the time delay

of one pulse with respect to the other is ∆t = |δν|L. A frequency-domain description

of the process is detailed in the short-pulse SHG theory in Section 1.2.1.

A precise measurement of δν in waveguides is critical to the design of QGVM

devices. The SHG tuning curve of devices with segmented QPM gratings provides

a convenient measure of δν. Segmentation with millimeter-scale periodicity Λs adds

low spatial-frequency components to the grating vector kg, and modulates the wave-

length tuning curve on a nanometer scale. With such a segmented grating, the total

wavevector mismatch becomes ∆k = k2 − 2k1 − kg − 2nπ/Λs, where n is an integer.

It is easy to see that the tuning curve has peaks at δνΩ = 2nπ/Λs. Here Ω is the

detuning from the carrier QPM frequency ω2. A measurement of the periodicity of

the peaks of the tuning curve determines δν. This method is less sensitive to imper-

fections in the waveguide or grating than is a measurement of the width of the single

peak of a uniform grating, and hence is a more accurate method to determine δν.
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Figure 2.2: Measured (black) and calculated (grey) tuning curves of a segmented
QPM grating; the best fit to the periodicity yields a precise value of δν = 0.36
ps/mm.

Figure 2.2 shows the SHG response for an APE waveguide device with Λs = 8 mm

(2-mm QPM segments separated by 6 mm). From the 1.39-nm modulation period we

infer that δν = 0.36 ps/mm around 1540 nm. As expected, this number is slightly

larger than the 0.30 ps/mm bulk value.

With an accurate value for δν, the design of a QGVM device is straightforward.

The schematic and geometry of a QGVM device is shown in Figure 2.3. After a

first QPM grating, the FH pulse is selectively coupled into a parallel waveguide by

a directional coupler, delayed by a small-radius bend, and then coupled back into

the original waveguide, now synchronized to the SH pulse. Therefore the SH pulse

generated in the second QPM grating overlaps with the first one. A single QGVM

stage doubles the effective interaction length for the pulses, and hence quadruples the

SHG efficiency without sacrificing bandwidth.

We denote the path length of the FH pulse as L1 and that of the SH pulse as L2.

L1 and L2 both include the common path of one QPM grating and two directional

couplers. L1 is slightly longer than L2 due to bending. In front of the second QPM

grating, the two pulses should be synchronized

L1/u1 = L2/u2, (2.1)
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Longer path length delays
the faster pulse

Directional coupler separates
FH and SH waves

Lg Ldc d

h

L2

Ldc

Figure 2.3: The schematic and geometry of a QGVM device using integrated wave-
guide structures. Lbend is the length of the bend over span d; L1 differs from L2 only
by replacing d with Lbend. L1 and Lbend are not shown on the figure.

or equivalently

(L1 − L2) /u1 = δνL2. (2.2)

L1 and L2 are related to the geometry of the QGVM device by

L1 = Lbend + 2Ldc + Lg (2.3)

L2 = d + 2Ldc + Lg (2.4)

Lbend =
2d

π
E

⎡⎣−(πh

d

)2
⎤⎦ (2.5)

rmin =
d2

2π2h
, (2.6)

where Ldc, Lg, and Lbend are the lengths of the directional couplers, QPM gratings,

and cosine bend, respectively, d, h, and rmin are the span, height, and minimum

radius of the bend, and function E(x) is the complete elliptic integral of the second

kind. [42] When designing a QGVM device, given rmin, one numerically solves Eqs.

(2.2) through (2.6) to obtain d and h.

Correct choice of d and h ensures that the SH pulses generated in the two QPM

gratings overlap in time. However, because of the difference between group-velocity
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and phase-velocity, the overlap of envelopes does not automatically ensure that the

carrier phase under the envelopes are the same. Only when the SH pulses generated

in the two sections are in phase, will they interfere constructively so that energy flows

from FH to SH in the second QPM grating. Successful operation of the device requires

the carrier phase of the pulses be correct in addition to synchronizing the envelopes.

Meeting this condition requires precise positioning of the QPM gratings. Given the

difficulty in calculating the absolute phase shift through the directional couplers and

bends, we designed the device to use temperature tuning to meet this requirement.

The relative phase of the pulses changes with temperature, as a result of the change

in effective refractive index and the thermal expansion of the crystal. When ∆T is

small, we have

φ (∆T ) =
2π

λ2

(
dn2

dT
L2 − dn1

dT
L1

)
∆T +

2π

λ2
(n2L2 − n1L1) ζLN∆T, (2.7)

where φ is the relative phase of the two SH pulses, ∆T is temperature change, λ2 is the

SH wavelength in vacuum, n1 and n2 are the effective refractive indices at the FH and

SH wavelengths, and ζLN is the thermal expansion coefficient of lithium niobate. The

first term on the right-hand side of the equation is the phase change due to the changed

refractive indices and the second term is the phase change due to thermal expansion.

We have omitted the ∆T 2 terms. As an example, given L1 = 15.8 mm, L2 = 15.0

mm, ζLN = 1.54× 10−5 K−1, n1 = 2.149, n2 = 2.201, dn1/dT ≈ dn2/dT = 1.1× 10−4

K−1, and λ2 = 775 nm, one needs a temperature change of approximately 8 ◦C to

tune the phase by 2π. Therefore given any initial phase of the two SH pulses, a

temperature tuning of ±4 ◦C is enough to obtain optimum operation.

2.3 Experimental Demonstration

To demonstrate this QGVM scheme, we fabricated our devices on a z-cut LiNbO3

chip. The waveguides were proton-exchanged to an initial depth of 0.7 µm and

annealed for 26 hours at 325 ◦C. The waveguides begin with 4-µm-wide mode filters

and widen gradually through a taper to the 8-µm noncritical QPM width. [25] The
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bends, also 8-µm wide, have a radius of 4 mm, the smallest radius for which the

additional loss due to bending is negligible for this type of waveguide. The lengths

of the bends range from 10.18 to 13.61 mm, exceeding the lengths of the straight

waveguides by 0.36 to 0.80 mm, providing a different time delay in each device. The

directional coupler at each end of the bend is 1.7-mm long and consists of two 8-µm-

wide parallel waveguides separated by 3 µm. It is designed to couple out more than

99% of the FH but have negligible coupling at the SH (typically below 1%). Two

sections of QPM gratings are adjacent to the directional couplers. They are 0.269-

mm and 0.538-mm long, respectively, with a QPM period of 15 µm. This choice of

grating lengths differs from the nominal design, but allows for convenient testing by

generating two clearly distinguishable pulses. A reference device without the bend

but otherwise identical to the full devices was fabricated adjacent to each set for

comparison purpose. The GVM parameter we used in designing all devices was 0.36

ps/mm, obtained in experiments described in Section 2.2.

When testing the devices, we used 150-fs pulses with a center FH wavelength of

1545 nm generated by an optical parametric oscillator (Spectra-Physics OPAL) at an

82-MHz repetition rate. The OPAL was pumped by a mode-locked Ti:sapphire laser

(Spectra-Physics Tsunami). The FH pulse was split into pump and reference beams.

The pump beam, attenuated to an average power of 0.5 mw, was coupled into the

PPLN device to generate the SH signals. The reference beam passed through a delay

line and then cross-correlated with the SH signals through two-photon absorption in a

GaAsP photodiode. [43] The device was heated to 75 ◦C to suppress photorefractive

effects. [44]

Figure 2.4 shows the time-resolved signal power of a reference device together

with four QGVM devices. Reference device (a) has no GVM compensation, and two

SH pulses are generated 6 ps apart. The energy in the first pulse is roughly four

times that of the second one, as expected for our design with one grating being 0.7

walk-off-lengths long, and the other one twice as long. The pulse widths are measured

to be 150 fs and 180 fs after deconvolution of the 150-fs reference pulse, consistent

with calculations [10] using the grating lengths and FH pulse width. The first pulse

becomes slightly longer than the second one because it propagates a longer distance
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and hence undergoes more GVD at the SH wavelength. In devices (b) through (d),

GVM is partially compensated, and the two pulses move closer as the added delay

increases toward 6 ps. Finally in device (e), the two pulses are very well synchronized

as we expect. The offset of the two envelopes after compensation is measured to be

less than 80 fs.

Figure 2.4: The measured cross-correlation traces of two SH pulses generated in two
QPM gratings. The pulses move closer together as the amount of GVM compensation
increases. In device (e) the envelopes of the two pulses are synchronized to within 80
fs.

Figure 2.5 shows the temperature-tuning results of the device in Figure 2.4(e). In

an 8-◦C cycle, the two overlapping pulses go between in-phase and out-of-phase, and

hence the output optical power assumes maximum and minimum values alternately.

This temperature tuning is small enough compared to the approximately 250-◦C

temperature-tuning bandwidth of the short QPM gratings we used, so that it does

not shift the phasematching wavelength of the gratings. Furthermore, over the 8-
◦C range, the overlap of the pulse envelopes is not affected. This is critical to the

successful operation of the device: the necessary temperature change to obtain the

correct phase is not so large as to move the envelope of one pulse off the other, nor is

it so small as to impose a strict temperature stability requirement for a stable output.
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Figure 2.5: Temperature tuning was used to achieve the optimal operation condition
for the device. The carrier phase of the two pulses were tuned by 2π in an 8-◦C cycle.
The two SH pulses went alternately between destructive and constructive interference.
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2.4 Further Discussion

As shown in Figure 2.6, the QGVM structure can be iterated to further increase the

bandwidth/efficiency product, which in SHG grows quadratically with the number

of QPM sections. There are, however, fundamental limitations imposed by GVD on

multi-stage QGVM (MQGVM) devices.

Figure 2.6: The schematic of a MQGVM device: four interaction sections will increase
the bandwidth/efficiency product by a factor of 16 for SHG.

Although GVM is compensated for after each QGVM section, an initially transform-

limited Gaussian pulse of duration τ0 propagating a distance l in a medium with GVD

parameter β2 is nevertheless broadened to τ2 = τ0

√
1 + (lβ2/τ 2

0 )
2
. [45] τ2 is a strong

function of the initial pulse duration, τ0, and is also determined by wavelength (hence

β2) and propagation distance l. Beyond the point that pulse broadening due to GVD

is negligible, the bandwidth of the device is limited by GVD, and further GVM com-

pensation no longer helps. We shall now estimate the maximum bandwidth/efficiency

enhancement one can achieve by iterating the QGVM structure.

Considering SHG of 1550-nm pulses in PPLN, the dominating GVD is at the SH

wavelength where β2 = 460 fs2/mm. [40] The total propagation distance l is related

to the number of QPM sections n by l = (n− 1)L2 +Lg. It is further related to bend

radius rmin with Eqs (2.3) through (2.6). Assuming that the largest tolerable pulse

broadening is 50%, which is an arbitrary choice but does not affect the generality of the

analysis, we plot the relation between the number of QPM sections and required bend

radius in Figure 2.7 for 100-fs and 150-fs pulses. The tightest bend we can make with

our current RPE waveguide technology is 1 mm, which allows bandwidth/efficiency

enhancement of 16 and 64 times for 100-fs and 150-fs pulses, respectively, before the

GVD effect becomes significant.

Besides GVD, there are other practical limitations on MQGVM devices. If the
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Figure 2.7: The effect of GVD on MQGVM devices. The more QPM sections, and
the shorter the original pulse duration, the smaller the bend radius required to stay
away from significant pulse broadening due to GVD.

total device length is too long, given the linear space of a 3-inch wafer, it can be

challenging to integrate all compensation stages on a single chip. One solution is to

fabricate a U-turn bend to use twice the chip length, as is demonstrated for another

application in Chapter 4. However, with a longer device and the deep exchange

waveguide, the propagation loss could become significant.

In theory, because of fabrication variations, a single temperature does not auto-

matically ensure correct phase relations among all MQGVM stages. However, since

the relevant phase relation is the same as the one that governs phasematching in a

QPM grating, the precision requirement is on the order of a half grating period. Just

as the fabrication precision has enabled >50-mm-long QPM gratings, consistent phase

over that length for MQGVM devices should not come up as an issue. This was con-

firmed by experiments in which MQGVM was used to achieve near transform-limited

OPG output. [36]



Chapter 3

Amplitude Modulation of QPM

Interactions

3.1 Introduction

While uniform QPM gratings have enabled many important all-optical signal-processing

functions, since the early days of QPM devices various techniques to engineer QPM

gratings have been developed to expand their functionality. Grating periods are

chirped to cover the wide bandwidth of femtosecond pulses and provide pulse com-

pression and shaping; [10, 46] transverse patterning is used in bulk to study nonlinear

physical optics [47] and together with angled gratings for odd-even mode mixers

in waveguide devices; [48] multi-channel devices that require simultaneous phase-

matching of several wavelengths in one grating are made possible by grating phase

modulation and aperiodic structures. [7, 49, 50, 51]

With all of the above developments, until recently a convenient technique to mod-

ulate the amplitude of QPM interactions has not been available. Amplitude modu-

lation is difficult for a device based on ferroelectric domain reversal, because unlike

electronic filters to which virtually any analog window function can be applied, [52]

a QPM grating is a digitized structure with a local nonlinear coefficient being ei-

ther plus or minus that of the material. Nevertheless, modulating the amplitude of

QPM interactions is important, because the frequency response (tuning curve) of a

33
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nonlinear device is proportional to the Fourier transform of the spatial distribution

of nonlinear coupling (Eq.(1.37)), and the ability to shape the output spectrum will

open up many new possibilities for optical signal processing.

For example, the tuning-curve shape of a frequency conversion device is important

in optical communications, where crosstalk between data channels is to be avoided.

Ideally, in a nonlinear mixing process, only the channel whose wavelength corresponds

to the center peak of the tuning curve should undergo frequency conversion. However,

as a result of the existence of tuning curve sidelobes, those channels whose wavelengths

correspond to the side peaks will also be converted, and thus introduce crosstalk in

many applications. [53, 54]

The intrinsic sinc-square tuning curve of a uniform grating is unsatisfactory in that

the ratio between its first side peak and main peak is only -13 dB, and its sidelobes

decay only quadratically with detuning, whereas in-band crosstalk below -30 dB is

often required for communication systems. [55, 56] To meet this goal, a sidelobe-free

tuning curve is most desirable.

Fourier-transform analysis shows that the tuning curve sidelobes can be suppressed

if the QPM interaction is apodized, i.e. the hard edges removed and the nonlinear

coupling brought to zero smoothly along the length of the device. [57] Some commonly

used apodization functions and their transfer functions have been compiled in Ref.

[58]. While apodization suppresses sidelobes, it also results in reduced peak efficiency

and broadening of the main peak. These factors must be balanced when selecting an

appropriate apodization function.

In this chapter, I present several techniques to effectively modulate the local ampli-

tude of QPM interactions in PPLN waveguides, and the experimental demonstration

of sidelobe-suppressed tuning curves using each of these techniques.

3.2 Different Approaches

It is in principle possible to modulate the effective nonlinear coefficient, deff , by lo-

cally changing the duty-cycle, D, since for first-order QPM, deff = dQPM sin (πD). In
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practice, however, an adequate modulation with deff being 10% that of a 50%-duty-

cycle grating would require D ≈ 3%. This small duty cycle corresponds to a domain

length of 0.5 µm for a C-band PPLN device, currently not easily controlled given the

domain growth mechanism of congruent lithium niobate undergoing periodic poling.

[24] For QPM devices in other materials, or for frequency conversion of longer wave-

lengths (hence longer domain length), duty-cycle control could be a practical option

for amplitude modulation.

The nature of guided-wave interaction (presented in Eqs. (1.33) through (1.37))

makes possible a number of techniques to modulate the local amplitude of nonlinear

coupling that do not necessarily involve modulating deff itself.

Mode-overlap control

Gm(x, y, z) in Section 1.2.3 can be defined in lithography by carefully positioning

the QPM gratings. With the gratings patterned into and out of the waveguide, the

overlap of the waveguide mode with the nonlinearity of the periodically poled material

is modulated. (Figure 3.1) This mode-overlap-control approach, although different in

realization and application, bears similarity to the previously demonstrated odd-even

mode QPM by angled and staggered gratings, [48] in that they both manipulate the

overlap integral by changing Gm(x, y, z). With this mode-overlap control, the overlap

integral can vary continuously from zero to a maximum, and virtually any spatial

profile of ϑm(z) can be obtained by a lithographically defined poling pattern.

Figure 3.1: The schematic of a mode-overlap-control device. The overlap of waveguide
mode with grating reversals is changed along the propagation direction to modulate
the spatial dependence of the nonlinear coupling.

Double couplers

An alternative to the above scheme, which modulates ϑm(z), is to instead modu-

late P1(z) in Eq.(1.36). This modulation can be realized by integrating two wavelength-

selective directional couplers with a QPM grating, as shown in Figure 3.2. The FH
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power is coupled into and out of the QPM grating by the two couplers. With a

constant-gap constant-waveguide-width coupler, P1(z) and hence κm(z) of the QPM

grating in either coupler region vary with a cosine-square function, although the grat-

ing itself is uniform.

Figure 3.2: The double-coupler structure modulates the FH power and hence the
nonlinear coupling in a waveguide, although the grating itself is uniform.

Deleted reversals

Figure 3.3: The deleted-reversal grating and the target function of κ1(z).

A third scheme uses a deleted-reversal pattern to directly modulate the amplitude

of the QPM grating, and match the spatial profile of nonlinearity to a target function.

(Figure 3.3) The reversals are deleted in such a way that the nonlinear coefficient

integrated over any two endpoints of the grating equals that of the target function.

In the algorithm, two endpoints start from the center of a uniform grating and move

symmetrically apart, one grating period per step. For every step, between the two

endpoints, the integral of the grating nonlinearity is compared to the integral of the

target function. If the grating integral is found to be larger than the target integral,

the last reversal is deleted (no domain reversal in that grating period), otherwise the

reversal is left alone. The analog target function is thus converted to a digitized QPM
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grating, an approach that draws close analogy to the design of ∆Σ A/D converters

for integrated circuits. [59] Similar to mode-overlap control, the target function can

be freely chosen here.

3.3 Experimental Demonstration

To demonstrate the above amplitude-modulation schemes, we fabricated devices on a

25-mm-long LiNbO3 chip. The RPE waveguides have 3.2-µm-wide mode filters at the

input, followed by tapers to widen the waveguides to the 7.5-µm noncritical width.

For the double-coupler devices, directional couplers of 1.7-mm length consisting of two

7.5-µm-wide parallel waveguides separated by 2.5 µm are incorporated. The QPM

period is 16.10 µm, and the grating lengths Lg are 5.64 mm for mode-overlap-control

and deleted-reversal devices, and 3.4 mm for the double-coupler device (twice the

coupler length).

Figure 3.4 shows measured SHG tuning curves of QPM gratings using each of

the three apodization methods, together with the tuning curve of a uniform grat-

ing for comparison. We used three different window functions (all truncated be-

tween −Lg/2 ≤ z ≤ Lg/2): sinc (2πz/Lg), cos2 (πz/Lg), and e−(3.3z/Lg)2 , for the

mode-overlap-control, double-coupler, and deleted-reversal devices, respectively. In

all three apodized cases, the apodization has a clear effect on sidelobe amplitudes.

The sidelobes are suppressed to 13-17 dB below the -13-dB characteristic of the first

sidelobe of a sinc-square pattern. The contrast approaches the goal of -30 dB with a

much smaller detuning than with the uniform grating. Consistent with Fourier trans-

form analysis, apodization has the effects of reducing peak efficiency (not shown) and

broadening the main lobe. If they are of concern, apodizing a grating twice as long

as the uniform one will fully compensate both effects.

It is useful to define a 30-dB half-bandwidth of a theoretical tuning curve as

the maximum detuning that reaches above -30 dB relative to the central peak. For

the above studied apodization functions, the 30-dB half-bandwith is close to Ω =

5π/(δνLg), compared to Ω = 20π/(δνLg) for a uniform grating of the same length.

(Ω is the frequency detuning from the phasematching center.) Another figure of
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Figure 3.4: The experimental (solid) and theoretical (dashed) SHG tuning curves
of a uniform grating and three apodized gratings. From top to bottom: uniform;
mode-overlap control; the double-coupler scheme; the deleted-reversal method. In
each case, the sidelobes are clearly suppressed with respect to those of the uniform
grating. The double-coupler grating is 3.4 mm long, i.e. twice the coupling length,
so its tuning curve is wider than that of the 5.64-mm-long gratings in the other three
plots.
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merit, which is independent of the length of the grating, is the ratio of the 30-dB

half-bandwidth to the half width of the main lobe (measured at the first zero in the

tuning curve). The ratios are 1.25 and 10 for the apodized and uniform gratings,

respectively.

In another set of devices, starting with a 350-period grating apodized according

to a cosine-square function, we add different lengths of uniform gratings between the

rising and falling edges, as shown in the left column of Figure 3.5. Measuring the

tuning curves of these devices we note that the larger the total grating length is, the

narrower the main-lobe is, but the higher the side-lobes are. As long as the apodized

parts contain the same number of periods, the two effects nearly cancel, so that the

30-dB half-bandwidth is relatively constant for the three cases.

In all gratings studied, the measured tuning curves agree well with theoretical

calculations in all but one aspect: their tails reach a floor whose level is roughly

1/N , where N is the total number of grating periods. This floor limits the extent

to which one can benefit from apodization. It also exists for uniform gratings. From

numerical simulations, (Figure 3.6) we believe it is the result of random grating duty-

cycle errors. A detailed theoretical treatment of this and other types of QPM errors

can be found in Ref. [16], whose results are briefly extended to explain this 1/N floor

in Appendix B. In addition, the tuning behavior of waveguide-based QPM devices is

also affected by waveguide inhomogeneities. Interested readers can find a theoretical

study of those effects in Appendix A.

3.4 Summary of Chapter 3

We have demonstrated several techniques to modulate the amplitude of QPM interac-

tions. The deleted-reversal devices are the easiest to fabricate, and are not sensitive to

alignment errors between gratings and waveguides as the mode-overlap-control devices

are. Neither are they sensitive to inaccurate coupler lengths as the double-coupler

devices are. Moreover, the deleted-reversal method can be used in bulk devices with

modifications that take into account the intensity change due to beam diffraction.

However, it may not be suitable for applications involving sub-hundred-femtosecond
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Figure 3.5: κ1(z) profiles (left) and the corresponding tuning curves (right) of three
apodized gratings, compared to theoretical calculations (dashed line). In the apodized
portion, the three gratings all have 350 QPM periods and use a cosine-square function,
but have different lengths of uniform gratings in the middle. The 30-dB bandwidth
is relatively constant in the three cases.
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Figure 3.6: The theoretical tuning curve (dashed) of an apodized grating of 350
periods and the simulated curve (solid) with ±5%-rms normally distributed random
error in grating duty-cycles.

pulses, as the walk-off length between FH and SH waves becomes so short that the

digitization effects of deleted reversals could manifest. The double-coupler scheme

has the advantage of separating the FH and SH light automatically, but unlike the

other two methods, the simple design described in this chapter has a fixed cosine-

square κm(z) in the coupler region. However, with more complicated designs, varying

the distance between the two waveguides of the coupler for instance, it could also

accommodate other target κm(z) profiles.

The sidelobes of tuning curves have been successfully suppressed by using each of

these techniques to apodize the QPM interaction, to the extent that random errors

in grating dominate off-phasematching photon generation.

The amplitude modulation techniques developed in this chapter can complement

other QPM engineering techniques, such as chirping, duty-cycle variations, phase

modulation, etc. Apodizing the amplitude and chirping the periods of a QPM grat-

ing simultaneously, for instance, one can achieve a flat gain profile over a wide band-

width, useful in optical parametric amplification and ultrashort pulse characteriza-

tion. [60, 61] Application in the latter is described in detail in Ref. [62]. In a wider
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context, amplitude modulation is not limited to apodization, but can be used for

many other applications that require the alteration of tuning-curve shapes, thereby

further extending the functionality of optical signal-processing devices.



Chapter 4

A Monolithic 160-Gbit/s Optical

Time-division Multiplexer

4.1 Introduction

An OTDM multiplexer (OTDM-MUX) is a key element of an OTDM system. Mul-

tiple data channels are combined by the OTDM-MUX to form the time-sequential

OTDM signals. The data can come directly from light sources or from a WDM

system. With a 40×4 MUX, four 40-Gbit/s data channels are interleaved into a 160-

Gbit/s pulse stream and transmitted at a single wavelength. However, because the

pulsewidth of the low-bit-rate data is usually too long to fit in one “bit” of the high-

bit-rate system, oftentimes one can not directly delay and combine the data channels

to form the OTDM pulse stream. Even if the pulsewidth is appropriate, the timing

jitter of the data from the low-bit-rate system tends to be large, and if transferred to

the high-bit-rate OTDM stream, will result in interchannel crosstalk. [19, 63]

The requirement for stable multiplexing with minimum fluctuation in pulse sep-

arations makes a specific type of OTDM-MUX most promising. Important to the

MUX implementation is a gated OF mixer with an optical clock. The optical clock

provides a train of short pulses with very low timing jitter, and acts as an optical

gate. When they overlap, the clock pulse samples the data pulses and generates a

signal pulse through nonlinear frequency mixing. With this gated mixing scheme, the

43
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signals are synchronized to the clock pulses automatically. With jitter in the data,

the clock will sample different parts within the data pulses from shot to shot, while

the signal timing is not affected. (Figure 4.1)

OTDM signal

Optical clock

Data

1

2

3

4

1 2 3 4 1 2 3 4 ……
OTDM-MUX

Data with jitter

Clock

Signal

Figure 4.1: OTDM-MUX based on gated mixing. The clock pulses serve as optical
gates to sample long data pulses when they overlap.

A 160-Gbit/s OTDM-MUX was previously demonstrated using PPLN waveguides

integrated with a planar lightwave circuit (PLC). [18] (Figure 4.2) In that experiment,

a 40-GHz optical clock was split by a 1×4 coupler and delayed by four different-path-

length PLC delay lines to produce four clock phases. Each clock phase was combined

with and modulated by one 40-Gbit/s non-return-to-zero (NRZ) data channel in

a separate PPLN waveguide through cascaded SHG/DFG. The four optically modu-

lated signals were then combined by a 4×1 coupler to generate the 160-Gbit/s OTDM

signal.

The following functions are essential to an OTDM-MUX:

• a sampling mechanism that converts long data pulses to short signal pulses;

• a timing mechanism that provides accurate delay to the signals;

• a multiplexing mechanism that combines the signals into a pulse stream;

• a selection mechanism that distinguishes the signal from unwanted light.

In the PPLN/PLC hybrid MUX, the sampling was through DFG in the PPLN

waveguide between a clock pulse and the frequency-doubled data pulse. The different
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Figure 4.2: A previously demonstrated PPLN/PLC hybrid OTDM-MUX. (Adapted
from Ref. [18].)

lengths of PLC delay lines provided accurate timing to each signal channel. The 4×1

coupler combined the signals to form a pulse stream. A bandpass filter selected the

signal and discarded light at other frequencies, e.g. the clock, the FH and SH of the

injected data. Using the hybrid MUX and a demultiplexer based on semiconductor

optical amplifier, 40-Gbit/s × 4 OTDM transmission was successfully demonstrated

over 160 km.

Convinced by the advantages of the gated mixing scheme, but unsatisfied with the

complicated hybrid design, we have developed a monolithic MUX fabricated entirely

on a single PPLN substrate. It is capable of 40-Gbit/s × 4 operation. By tailoring and

integrating multiple optical signal-processing functions on a single substrate, we are

able to use one instead of four PPLN waveguides and eliminate the use of additional

couplers and silica-on-silicon circuitry, hence achieving a monolithic layout and higher

efficiency, while keeping the crosstalk low. I describe the MUX scheme in Section

4.2. This is followed in Section 4.3 by the relevant theory to evaluate the MUX

performance. In Section 4.4 I present experimental characterization of the device

using ultrafast optical techniques. I hope readers will find interesting and useful not

only the demonstration of the MUX, but also the various experimental techniques we

used to test the device. They are readily transferable to other applications. Further

discussion and proposed future work are presented in Section 4.5.
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4.2 The Monolithic Multiplexer Scheme

The PPLN MUX is shown schematically in Figure 4.3. The first part of the MUX

converts an external 40-GHz FH clock to a four-phase SH clock: Each new clock pulse

now consists of four discrete frequencies overlapped in the time domain. Next, the

four-phase clock and four channels of data are injected into the sampling gratings.

There they mix in four different grating segments, which also provide the necessary

time delays between channels. The generated OTDM signals pass the bandpass filter

at the output. This section describes the working principles of each functional part.

Clock
conversion Sampling gratings BPF

Data

FH clock
SH clock

OTDM signal

Figure 4.3: Schematic of the PPLN MUX, consisting of a clock-conversion part and
a sampling part.

4.2.1 Clock conversion in phase-modulated gratings

The MUX takes as input an external clock in the C band. The repetition rate of

the external clock should match the bit rate of each data channel (40 Gbit/s). Large

bandwidth is also required for the generation of four spectrally distinct SH clock

phases.

From the external FH clock, a SH clock is generated in the QPM grating through

SHG. Observed in the time domain, the new clock remains a 40-GHz pulse train. It

is the frequency-domain picture of the clock that has some important new features:

(1) Each clock pulse now exhibits four discrete frequency peaks; (2) the peaks are at

SH frequencies. We can view the new clock as four perfectly synchronized 40-GHz

clocks with four different “colors”, and they become the four phases of a 160-GHz
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clock. These spectral features are important to the timing and selection mechanisms

of the MUX, as we will see shortly in Section 4.2.2. In this section I shall explain how

to generate such a clock with desired properties.

Recalling Eq.(1.11) and the discussion in Section 1.2.1, a QPM grating is a

frequency-domain nonlinear filter. With a broadband input, the SH spectrum is

proportional to the grating transfer function. A uniform QPM grating has the fa-

miliar sinc transfer function with a single center peak. In order to generate the four

clock phases, we need a QPM grating that has four peaks in its transfer function.

QPM gratings with multiple transfer-function peaks have proved useful for multi-

channel wavelength converters in WDM applications, [7, 49] and for improving the

temporal properties of the output of a pulsed OPA. [64] To date, several domain

structures have been proposed, including a periodic-phase-reversal structure [7], a

superlattice structure [50], an aperiodic poling structure, [51] and a phase-modulated

structure. [49] The phase-modulation approach has several advantages, such as ver-

satile control over peak amplitudes and positions, loosest fabrication requirements,

and minimum loss in efficiency.

Phase modulation is realized by periodically shifting the center positions of the

domains with a phase-modulation period Λph, as illustrated in Figure 4.4. Within

each phase period, the domains are shifted according to a phase-modulation function.

The simplest functional form is +π for the first half period and −π for the second

half. [7] This phase-reversal grating produces two first-order QPM peaks of the same

amplitude. More complicated phase-modulation functions can be designed to obtain

desired tuning curves.

Figure 4.4: Schematic of a phase-modulated QPM grating.

From the Fourier-transform analysis we gain insights that help to design the dif-

ferent aspects of the phase-modulated grating:
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1. Λph determines the peak separation. The QPM grating has spectral peaks when

the wavevector mismatch satisfies

∆k = 2π

(
1

Λ0
+

m

Λph

)
, (4.1)

where Λ0 is the average QPM period and m is an integer. From Eq.(4.1) Λph

can be related to design parameters by

Λph =
ω2

∆ω2

Λ0, (4.2)

where ω2 is the SH phasematching frequency that corresponds to Λ0 and ∆ω2

is the separation of QPM peaks at the SH frequency. Given desired center

frequency and QPM peak separation, one first chooses Λph using Eq.(4.2).

2. The functional form of the phase modulation controls the ratio of the heights

of the transfer function peaks. In order to have equal power in the four clock

phases, the finite bandwidth of the FH clock must be compensated by making

the two center peaks of the tuning curve smaller than the two side peaks. The

actual ratio depends on the spectrum of the FH clock and the frequency spacing

of the SH clock phases. The phase-modulation function is generated by iter-

ated numerical optimization until its Fourier spectrum has the required peak

amplitude ratios. Figure 4.5 shows several phase-modulation functions and the

corresponding tuning curves.

3. The width of individual peaks is inversely proportional to the total length of

the grating, and is similar to the bandwidth of a uniform grating of the same-

length. The area under the first-order peaks is typically 90% that of a uniform

grating of the same length.

In the phase-modulated grating, the broadband FH pulses of the external clock

are doubled to the SH, with a spectrum given by the grating transfer function filtering

the spectrum of the squared pump pulse. In the time domain, as a result of GVM,

the pulse is broadened to roughly τ = δνLcg, where δν is the GVM parameter and
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Figure 4.5: Phase-modulation functions (left) and the corresponding tuning curves
(right). Note the peak width, spacing and ratios are controlled by the grating length,
modulation period, and functional form, respectively.
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Lcg is the length of the clock-conversion grating. This is equivalent to the grating’s

nonlinear filtering effect that narrows the spectrum of each clock phase.

4.2.2 Sampling, timing, and selecting

The four-phase clock now enters the sampling part of the MUX, consisting of four seg-

mented sampling gratings, each of length Lsg and center-to-center separation Lu. The

QPM periods Λi of the sampling gratings are chosen such that the carrier frequency

of the ith clock phase equals the SH phasematching frequency of the ith sampling

grating.

Now suppose only channel 1 data is switched on. In the ith sampling grating,

only the ith clock phase falls within the pump bandwidth of that grating (the ith

grating “sees” just the ith clock phase), and the difference frequency between the ith

clock phase (at frequency ωp1) and channel 1 data (at frequency ωd1) is generated at

ωp1−ωd1. A channel-1-data pulse mixes with a different clock phase in each sampling

grating. Altogether, it generates four pulses at four different frequencies. If we choose

a bandpass filter at the output of the device that passes just ωp1 − ωd1, viewed after

the filter the other three pulses can be neglected in the analysis of the device.

When all four data channels are present, each generates four signal pulses. The

frequencies of the sixteen pulses form a matrix ωpi−ωdj . Elements in the same column

are generated in the same sampling grating and elements in the same row are from

the same data channel. If the frequency-domain spacing of SH clock phases and data

channels are the same, all diagonal elements are equal in frequency. A bandpass filter

at that common frequency selects just those four pulses. (Tab. 4.1)

The timing of the four pulses is the direct consequence of each pulse being gener-

ated in a different grating. Each signal pulse is synchronized to the SH clock pulse

the moment it is generated. Thereafter, due to GVM between the C-band signal and

SH clock, the signal pulse leads the clock pulse by δνl as it propagates a distance

l. Therefore the signal pulse generated in an earlier grating leads the next one by

∆t = δνLu. In a 160-Gbit/s system ∆t = 6.25 ps. Given δν = 0.36 ps/mm in

PPLN waveguides, we need Lu = 17.36 mm. In Chapter 2 GVM was compensated
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SG I SG II SG III SG IV
Ch 1 ωp1 − ωd1 ωp2 − ωd1 ωp3 − ωd1 ωp4 − ωd1

Ch 2 ωp1 − ωd2 ωp2 − ωd2 ωp3 − ωd2 ωp4 − ωd2

Ch 3 ωp1 − ωd3 ωp2 − ωd3 ωp3 − ωd3 ωp4 − ωd3

Ch 4 ωp1 − ωd4 ωp2 − ωd4 ωp3 − ωd4 ωp4 − ωd4

Table 4.1: Generated signal frequencies, assuming four data channels at ωdi, i = 1−4;
four SH clock phases at ωpj, j = 1 − 4. As long as the data channel spacing in the
frequency domain equals the clock phase spacing, the diagonal elements are equal
and can be selected by a bandpass filter.

to achieve higher bandwidth/efficiency product; here it is exploited as a convenient

delay mechanism to set correct signal timing. Since δν and Lu are both fixed, the

timing is as accurate as the clock itself. These processes are illustrated in Figure 4.6.

SH clock
~775 nm

Sampling gratings

Data
~1550 nm

Signal
~1550 nm

Ch1

Ch2

Ch3

Ch4

Figure 4.6: Illustration of signal timing. A signal pulse is generated in the grating
corresponding to a certain data/clock-phase pair. Immediately after, the signal starts
to walk off from the clock. The delay between two signal pulses generated in two
gratings is determined by GVM and the separation of the gratings.

If the transfer functions of the sampling gratings partly overlap, the four signal

pulses from the same row of Tab. 4.1 are not truly distinct in the frequency domain,

and a fraction of the pulse energy will pass the bandpass filter, becoming interchannel

crosstalk. To minimize crosstalk, one can apodize the sampling gratings to suppress

transfer function sidelobes, by using the techniques developed in Chapter 3.
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4.3 Theoretical Treatment

The nonlinear optical process on which the OTDM-MUX is based is cascaded SHG/DFG

in two separate gratings, with the SH of the external clock serving as the pump of the

subsequent DFG step in the sampling gratings. The carrier frequencies of the OTDM

signal (ωs), the SH clock (ωp), and data (ωd) satisfy ωs = ωp −ωd. (Data and OTDM

signal correspond to the signal and idler, respectively, in the conventional terms of

a DFG process.) Under the undepleted pump, unamplified signal, and no-loss limit,

the transfer functions for these processes are given by Eqs.(1.11) and (1.23) in Section

1.2.1. Because the data bandwidth (∼ 1010 Hz) is sufficiently narrow compared to the

pump bandwidth (∼ 1012 Hz) of each sampling grating (equivalently the data walk-

off length is much longer than the sampling grating), the frequency-domain envelope

of the data can be approximated as a delta function, i.e. Âd = adδ(ω = ωd), and

Eq.(1.23) is simplified to Eq.(1.26). The signal spectrum is limited by the bandpass

filter at the output. Summarizing the above discussions, for a given data channel (we

have chosen data channel 2 for the following discussions), we obtain:

Âos(Ω) = f(Ω)D̂sg(Ω)D̂cg(Ω)Â2
cl(Ω)ad (4.3)

Ω is the frequency detuning from ωs and ωp. f(Ω) is the bandpass filter function, and

Âos(Ω) is the frequency-domain field envelope of the OTDM signal. Â2
cl(Ω) is the self-

convolution of the external clock’s frequency-domain envelope, defined in Eq.(1.13).

D̂cg(Ω) is the SHG transfer function of the clock-conversion grating and D̂sg(Ω) is the

sum of the DFG transfer functions of the four sampling gratings:

D̂sg(Ω) =
2∑

m=−1

D̂DFG(Ω + m∆ωd)e
−iδν(Ω+m∆ωd)mLu (4.4)

where ∆ωd is the frequency-domain data channel spacing. The numbering of m from

-1 to 2 results from our choice of data channel 2 as the reference point, where m = 0.

The phase term comes from the grating position and the Fourier shift theorem. D̂cg(Ω)

and D̂DFG(Ω) are explicitly defined in Eqs. (1.12) and (1.27).

To generate four equal amplitude SH clock phases from a FH pump with limited
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bandwidth, the clock-conversion grating was designed to have a transfer function with

two outer spectral peaks larger than the inner peaks. In addition, the peak positions of

D̂sg(Ω) are designed to match those of D̂cg(Ω). (Figure 4.7a) The spectrum resulting

from the mixing of this SH clock and one data channel is shown in Figure 4.7b. After

the bandpass filter, only one lobe is selected, and the contributions from the tails of

D̂DFG(Ω + m∆ωd)(m 
= 0) become crosstalk in the corresponding time slots. (Figure

4.7c).
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Figure 4.7: a: the grating transfer functions and spectrum of the external clock;
b: signal spectrum (solid) after data-clock mixing and before the bandpass filter
(dashed); c: signal pulse shape in time domain.
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The energy in the OTDM signal pulse is:

Uos =
∫ ∞

−∞

∣∣∣Âos(Ω)
∣∣∣2 dΩ = Pd

∫ ∞

−∞

∣∣∣f(Ω)D̂cg(Ω)D̂sg(Ω)Â2
cl(Ω)

∣∣∣2 dΩ, (4.5)

where Pd is the peak input data power. We use the following normalizations to relate

Uos to the normalized efficiency ηnor of a PPLN grating:

For the phase-modulated clock-conversion grating:

∣∣∣D̂cg(Ω)
∣∣∣2 = ηnorL

2
cg

∣∣∣D̄cg(Ω)
∣∣∣2 (4.6)

The sum of the four peak heights of
∣∣∣D̄cg(Ω)

∣∣∣2 is unity.

For a sampling grating apodized according to a cosine-square function, its peak

efficiency is 1/4 that of a uniform grating of the same length, so

∣∣∣D̂sg(Ω)
∣∣∣2 =

ηnor

4
L2

cg

∣∣∣D̄sg(Ω)
∣∣∣2 (4.7)

where each of the four peaks of
∣∣∣D̄sg(Ω)

∣∣∣2 is unity.

Âcl(Ω) can be written as

Âcl(Ω) = Âcl(0)Ācl(Ω) (4.8)

where the peak of Ācl(Ω) is unity. D̄cg, D̄sg, and Ācl are unitless. The energy in the

clock pulse is ∫ ∞

−∞

∣∣∣Âcl(Ω)
∣∣∣2 dΩ = b

∣∣∣Âcl(0)
∣∣∣2 =

Pcl

rbit
, (4.9)

where Pcl is the average clock power and rbit is the bit rate of data and clock, and

b =
∫ ∞

−∞

∣∣∣Ācl(Ω)
∣∣∣2 dΩ. (4.10)

So

Âcl(0) =

√
Pcl

brbit
. (4.11)
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If we assume a Gaussian clock pulse with 1/e half bandwidth ∆Ωcl:

Ācl(Ω) = e
− Ω2

∆Ω2
cl , (4.12)

then b =
√

π
2
∆Ωcl. If the Gaussian pulse is transform limited and has a FWHM

duration τ1/2, then b ≈ 2.1/τ1/2.

With Eqs. (4.5) through (4.11), we have

Uos = Pd

(
ηnorLcgLsgPcl

2brbit

)2 ∫ ∞

−∞

∣∣∣f(Ω)D̄cg(Ω)D̄sg(Ω)A2
cl(Ω)

∣∣∣2 dΩ (4.13)

where A2
cl(Ω) is the self-convolution of Ācl(Ω). Note that the overall transfer function

gets narrower with larger Lcg and Lsg, so the signal pulse energy does not scale with

(LcgLsg)
2 in general.

Define the MUX efficiency as the ratio of signal to data pulse energy normalized

to the square of average clock power:

ηMUX ≡ Uos

UdP
2
cl

=
1

rbit

(
ηnorLcgLsg

2b

)2 ∫ ∞

−∞

∣∣∣f(Ω)D̄cg(Ω)D̄sg(Ω)Ā2
cl(Ω)

∣∣∣2 dΩ (4.14)

In the last relation we have assumed NRZ data format so that Ud ≈ Pd/rbit. Although

the loss of a long PPLN device is not negligible, Eq.(4.3) is still a good approximation,

because Lcg +Lsg is short and the loss in that region is below 0.5 dB. The true signal

pulse energy and MUX efficiency are modified by a simple propagation loss term

e−(α1L1+α2L2), where α1 and α2 are the power loss coefficients at the FH and SH

frequencies, and L1 and L2 are the propagation distance of the OTDM signal and SH

clock, respectively.

There are two separate origins of crosstalk. First, without considering adjacent

sampling gratings, in the time domain the generated signal pulse has tails that extend

into other time slots. Second, crosstalk comes from the tails of the transfer function

D̂DFG(Ω+m∆ωd)(m 
= 0) at the filter pass band around Ω = 0. The latter is reduced

but not eliminated by apodization. To evaluate the total effect, we take the overall

spectrum calculated with Eq.(4.3) and Fourier transform it to get the time-domain
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pulse envelope, i.e. Pos(t) ∝
∣∣∣∫∞−∞ Âos(Ω)eiΩtdΩ

∣∣∣2. The crosstalk from each channel is

quantified as

X =

∫ 3T/2
T/2 Pos(t) dt∫ T/2
−T/2 Pos(t) dt

, (4.15)

where T is the duration of one bit (6.25 ps in a 160-Gbit/s system). This crosstalk is

“in-band”, meaning that the crosstalk from all channels is coherent and adds up inter-

ferometrically. From a system point of view, the acceptable crosstalk level is X < −26

dB [54] if we assume that crosstalk comes only from adjacent channels. If ultrafast

(>> 160 GHz) phase scrambling of data channels is available, this requirement is

loosened to X < −20 dB. [55]

Given the data channel spacing, which determines Λph, one needs to choose the

number of phase-modulation periods, hence Lcg, the length of each sampling grating,

Lsg, and the filter function f(Ω). Without an analytical expression for Âos(Ω) opti-

mizing the parameters in the most general form for both efficiency and crosstalk is

difficult. However, with Eqs. (4.14) and (4.15) numerical evaluation of the efficiency

and crosstalk is straightforward. In this way we compare the MUX performance to

theory in the next section.

4.4 Experimental Demonstration

4.4.1 Device

To demonstrate the OTDM-MUX, we fabricated the device using PPLN RPE wave-

guides. The input section of the device is a 3-µm-wide mode filter followed by a

quadratic taper to widen the waveguide to the 6.5-µm noncritical phasematching

width. Between the clock-conversion grating and first sampling grating, there are

two wavelength-selective directional couplers. Each coupler is 1.5-mm long, consisting

of two parallel 6.5-µm-wide waveguides separated by 2 µm. The first coupler is an

ω-remover to filter out the external FH clock; the second one couples data into the

MUX.

As was discussed in Section 4.2.2, for correct signal timing, we need Lu = 17.36
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mm. With this constraint the sampling part alone is longer than 58 mm. Including

the input and clock-conversion sections, the total device length exceeds 70 mm. In

order to fabricate the device on a chip diced from a 3-inch-diameter (76 mm) wafer,

we integrated a 180-degree bend to use twice the chip length. With a 2.39-µm initial

proton-exchange depth, 23-hr annealing at 310 ◦C, and 27-hr RPE at 300.5 ◦C, the

minimum bend radius with negligible bending loss is 2 mm. Now that the clock and

data input, and signal output ports are at the same end of the chip, they are spaced

by 250 µm to align with three optical fibers of a V-groove array. The device, shown

(not to scale) in Figure 4.8, has a tennis-racket shape.

Clock conversion

Sampling 1

Sampling 2Sampling 3Sampling 4

Clock

Data

Signal

-remover

Figure 4.8: Schematic of the MUX integrated on a single chip.

In the proof-of-principle device, the clock-conversion grating has a total length

of 4.47 mm with two phase-modulation periods. The average QPM period is 14.80

µm. It is aimed for a data channel spacing of 11.5 nm. The peak ratios of the

tuning curve are designed to be 1.8:1:1:1.8 to compensate for the 25-nm FWHM of

the external clock and generate four clock pulses of equal amplitude at 770.5, 773.3,

776.0 and 778.8 nm. Each sampling grating is 5.18-mm long, with local nonlinear

coupling apodized according to κ(z) ∝ cos2 (πz/Lsg) (z = 0 is grating center) using

the deleted-reversal technique. The grating periods are 14.56, 14.68, 14.80 and 14.92

µm to match the wavelengths of the four-phase clock.
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4.4.2 Apparatus

Figure 4.9 shows the experimental setup. The 150-fs C-band pulses of the external

clock came from an optical parametric oscillator (Spectra-Physics OPAL) pumped

by a mode-locked Ti:sapphire laser (Spectral-Physics Tsunami). It had an 82-MHz

repetition rate. Before coupling into the clock port of the MUX, the pulses went

through carefully balanced lengths of single-mode and dispersion-compensating fibers

to maintain the pulse width. The data was from a tunable CW laser amplified by

an EDFA. The PPLN chip was held at 100 ◦C to protect it from photorefractive

damage. The 10-skip-0 filter at the output had a passband center at 1549.8 nm, an

8-nm 0.5-dB bandwidth, and a 9-nm 30-dB bandwidth. The signal was connected

to an optical spectrum analyzer (OSA) for frequency-domain measurements and a

cross-correlator for time-domain characterizations.

DATA EDFA

Tsunami OPAL

Chopper

MUX

APPLN

OSA

Diode

Lock-in

PiezoD
el

ay
lin

e

Clock (pump)
Signal

Data

Reference

Light

Electric

BPF

Figure 4.9: The experimental setup for OTDM-MUX characterizations.

The cross-correlator took 10% of the external clock power as a reference for cross-

correlation with the output pulses. The approximately 3-meter path lengths of the

reference and the signal were carefully adjusted to match (within 5-mm difference).

A delay line periodically changed the reference path length so that in time domain, it

swept through 50 ps and overlapped with a signal pulse for a fraction of each period.
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For cross-correlation, the reference and signal were both injected into an aperiodically

poled lithium niobate (APPLN) waveguide, [10] in which SFG took place when the

two pulses overlapped. The longitudinally chirped QPM periods provided enough

SFG bandwidth for undistorted cross-correlation. The time-resolved SFG power was

proportional to the convolution of the two pulses’ time-domain power envelopes.

When the reference pulse was narrow enough to be approximated as a delta func-

tion in the time domain, the signal pulse envelope was obtained directly. Due to the

high nonlinear efficiency of the APPLN-waveguide mixer, this cross-correlator was 103

times more sensitive than a earlier-version cross-correlator using two-photon processes

in a GaAsP photodiode. [65] A similar technique has been used elsewhere to demon-

strate autocorrelation and frequency-resolved optical gating (FROG) of hundred-aJ

pulses. [60, 61]

To keep the clock, data, and signal all in the C band, their frequencies cannot be

too far apart. That constraint resulted in the APPLN chip also efficiently generating

the SH of the reference pulse. Much of the wide bandwidth of the SFG light (of the

signal-reference cross-correlation) and SHG light (of the reference) overlapped: they

could not be distinguished with a spectrophotometer. Due to the high peak power

of the reference pulses, the SHG was overwhelming. To overcome this difficulty, we

chopped the data input at 1.5 kHz. Consequently, the OTDM signal, and hence the

SFG but not the SHG light, was modulated at the same frequency, and was selectively

detected by a lock-in amplifier.

In the experimental MUX, due to the non-ideal ω-remover, a small amount of

the external clock (pump) power leaked into the output. Although neither the pump

nor the reference was chopped, the interferometric cross-correlation of the two was

still detected by the lock-in amplifier, introducing noise into the measurement. There

were two mechanisms that accounted for this behavior. First, in the MUX, through

thermal effects, the data power changed the phase of the residual pump in the same

waveguide at the chopping frequency, and the phase change translated into power

fluctuation through interference with the reference. Second, even when no data was

present, air flow in the 3-m-long light path randomly modulated the relative phase of

the interfering light. The phase-modulated interference patten exhibited a wide range
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of local frequencies, which inevitably had a component at the chopper frequency. We

used the phase dithering method [66] to solve the problem: A piezo-actuated mirror

provided exactly 2π phase change at 10 kHz to the reference beam, so that any

lower frequency phase modulation did not change the power averaged at the chopper

frequency.

4.4.3 Characterization
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 sampling gratings
SH clock

Figure 4.10: Spectral-domain characterization. Overlap of the SH-clock spectrum
(solid) and sampling-grating transfer function (dashed) is critical to the integrated
operation.

We started with the spectral domain characterization of individual components

of the device. Measured with an OSA, the solid curve in Figure 4.10 confirms that

the four phases of the SH clock had approximately equal energy. The dashed CW

tuning curve of the four-segment sampling grating is proportional to
∣∣∣D̂sg

∣∣∣2. Plotted

together, the curves confirm that the SH clock wavelengths matched the sampling

gratings’ pump acceptance bands. This was critical to the successful operation of the

integrated device. The absolute spacing of the SH clock phases corresponds to an

11-nm data channel spacing.

Although the sampling gratings were apodized and each had <-30-dB tuning-

curve sidelobes, one should not be surprised to see the fringes on the tuning-curve

peaks. In the CW measurement, the SH waves generated in all the gratings were
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coherent, and at any given wavelength they combined interferometrically. A -30-dB

power contribution from an adjacent grating can account for ±7% power fluctuation

at the peaks. This fluctuation is also seen in the theoretical curve in Figure 4.7.
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Figure 4.11: Time-resolved OTDM signal power from four data channels, measured
with a cross-correlator.

The integrated device was characterized in the time domain. The CW laser was

tuned to 1532.2 nm, 1543.2 nm, 1554.2 nm, and 1565.2 nm to simulate data channels

1–4. The OTDM signals from the four channels are shown in Figure 4.11. The small

peaks to the left of each plot are a result of the residual pump pulse filtered by

the bandpass filter. They serve as markers in the time-domain traces. With 1-mW

average clock power and 60-mW data power coupled into the MUX, the OTDM signal

power was 9–14 µW for the four channels. If the clock were scaled from 82 MHz to

40 GHz at the same pulse energy, the corresponding efficiency would be 35-50%/W2.

A major obstacle in the experiments was the low average signal power due to the low

clock repetition rate, roughly 1/500 that of a real system. However, with the highly

efficient APPLN cross-correlator, we were still able to achieve a signal-to-noise ratio

exceeding 20 dB. The electronic noise of the lock-in amplifier and the 1/f noise of the

reference light each accounted for about half of the remaining noise floor. Short of

a system test, the ultafast characterization revealed most key aspects of the MUX,
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e.g. timing accuracy, data channel spacing, pulse shape, efficiency and crosstalk.

Measured MUX performance is compared to theoretical calculations in Tab. 4.2.

∆λdata(nm) T (ps) τ (ps) X(dB) ηMUX(%/W2)
Design 11.5 6.25 1.7 -27 68

Real device 11 6.2 1.5 <-20 35-50

Table 4.2: Calculated and measured MUX performance. τ is the FWHM of sig-
nal pulses. Theoretical efficiency calculated with 3-dB propagation loss. Measured
efficiency has been scaled to 40 Gbit/s.

4.5 Further Discussion

We first compare in Tab. 4.3 the different MUX mechanisms in the monolithic and

hybrid designs.

PPLN/PLC hybrid MUX PPLN monolithic MUX
Sampling DFG (SH of data as pump) DFG (SH of clock as pump)
Timing PLC waveguides GVM in PPLN waveguide

Multiplexing 4×1 couplers WDM couplers
Selection bandpass filter bandpass filter and ω-remover

Table 4.3: Comparing the different MUX mechanisms of the hybrid and monolithic
designs. For the multiplexing mechanism, power is wasted in the 4×1 couplers, while
the WDM couplers are theoretically lossless.

We have characterized the integrated operation of the OTDM-MUX using ultra-

fast optical techniques, and its performance agreed well with theory. It has several

advantages over the hybrid MUX. The monolithic design simplifies fabrication pro-

cesses. The delay mechanism that makes use of GVM eliminates the use of several

couplers and greatly reduces the number of waveguides. Although a band of colors

were generated in the MUX, the selection mechanism worked well and crosstalk was

not an issue. The proof-of-principle device we demonstrated in this chapter already

had a slightly higher efficiency compared to 32%/W2 in Ref. [18]. With an optimized

design, the data channel spacing can be reduced and efficiency improved by using
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either longer clock-conversion gratings or longer sampling gratings, or both, as the

below numerical example shows.

∆λdata(nm) Lcg(mm) Lsg(mm) X(dB) ηMUX(%/W2)
8 7.4 8.0 -29 157

Table 4.4: Numerical example of a practical MUX design with reduced data channel
spacing and higher efficiency. Efficiency calculated with 3-dB loss.

Several issues still accompany the proof-of-principle device. Although the residual

pump pulse falls between two signal pulses, it is better further attenuated (ideally 25

dB more) before true system tests are carried out. Cascading multiple ω-removers

may solve this problem, as each one can provide 10 − 20 dB for pump attenuation.

Using a combination of other types of ω-removers, e.g. a tight bend that radiates the

FH but transmits the SH light, or a narrow waveguide that cutoff the FH light, is also

likely to help. The loss of the deep exchange waveguides is roughly 0.4 dB/cm, at both

FH and SH wavelengths, compared to 0.1 dB/cm for conventional RPE waveguides.

Ideally, the MUX would be fabricated on a 4-inch-diameter wafer so that the tight U-

turn bend would not be necessary and conventional RPE waveguides could be used.

Finally, with high average clock power, the generated SH light can be harmful to

the waveguides. Waveguides fabricated on photorefractive-resistant materials, e.g.

stoichiometric or Mg-doped lithium niobate and lithium tantalate, [27, 67, 68] may

ultimately solve this problem.



Chapter 5

Conclusion

5.1 Summary of Contributions

The essential contribution of this dissertation is to extend the functionality of PPLN-

based optical signal-processing devices.

We addressed the bandwidth/efficiency trade-off of OF mixers in Chapter 2 by

introducing a quasi-group-velocity-matched structure. With the QGVM technique,

one no longer has to trade efficiency for high bit-rate in bit-level optical signal pro-

cessing. QGVM is not only analogous but also complementary to the now mature

quasi-phase(-velocity-)matching technique. The two, together with grating-period

chirping to accommodate GVD, allow us to effectively manipulate the zeroth- through

second-order dispersion of short optical pulses.

To further lift the constraint on optical signal processors, in Chapter 3 we de-

veloped several techniques to modulate the nonlinear interaction amplitude. These

techniques proved successful to suppress transfer-function sidelobes and thereby min-

imize interchannel crosstalk in optical communication systems. Combined with other

QPM engineering techniques, e.g. domain-phase modulation and dispersion manip-

ulation, amplitude modulation is a big step forward toward truly versatile spectral

shaping of optical pulses.

These techniques are compatible with, indeed based on, integrated optical circuits.

We added to that toolbox a 2-mm-radius U-turn bend based on deep exchange RPE

64
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waveguides. It allowed for doubled device length and the integration of more signal-

processing functions on a single chip.

The latest effort in optical signal processing has been to go beyond discrete signal-

processing functions and build integrated multifunctional devices. Chapter 4 of this

dissertation demonstrated a sophisticated optical signal-processing device: a mono-

lithic OTDM-MUX capable of 160-Gbit/s operation. Its integrated operation could

not be successful without a toolkit of individual signal-processing functions, the ability

to tailor them by design, and to integrate them with strict grating- and waveguide-

fabrication requirements. Besides the advantages of being monolithic, the demon-

strated device had figures of merit that met or exceeded previously demonstrated

MUXs.

5.2 Future Directions

Many new directions for optical signal processing in PPLN have been outlined in

individual chapters. Once the basic building blocks are available, e.g. OF mixers and

waveguide structures, many of the developments in this dissertation can be extended

to other material systems. Orientation-patterned semiconductors such as GaAs have

higher nonlinear coefficients and can operation in polarization independent fashion,

making them attractive for optical signal processing.

The single most severe problem for current devices is the photorefractive damage.

At high power levels, RPE waveguides fabricated on congruent lithium niobate are

slowly damaged by green or blue light generated by parasitic SHG or SFG processes

even if the chips are heated to 150 ◦C. An important direction is to improve periodic

poling and develop low-loss waveguides in photorefractive-damage resistant materials,

such as MgO-doped or stoichiometric lithium niobate and lithium tantalate. [27, 67,

68]

On the device side, the tight circular bend made possible on-chip optical loops

and cavities. If the propagation loss is further reduced, devices based on those con-

cepts could be designed. Another possibility is to develop other U-turn structures,

for example a half-length directional coupler with a high-reflection-coated end facet.
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This structure is compatible with the low-loss conventional RPE waveguides but will

require higher fabrication precision.

Next-generation devices may also combine nonlinear optical and electro-optical

functions. MQGVM devices may perform better by adding EO phase shifters in each

QGVM section and synchronizing their phase relations. Applying opposite voltages

to the reversed domains would allow us to tune the QPM wavelength after the chip

is made, over a range not achievable by temperature tuning. The fabrication process

would require one extra lithography step for aligning electrodes with the gratings and

waveguides.



Appendix A

Tuning Behavior in Non-ideal

Waveguides

The SHG tuning curve is a good diagnostic for optical signal-processing devices. In

real devices, various distortions to the tuning curve result from fabrication errors.

(Figure A.1) Around the center of the phasematching peak, reduced peak height

is often accompanied by asymmetric/broadened/enhanced sidelobes. Far off phase-

matching, sidelobe heights deviate from the theoretical curve, and a floor of roughly

1/N (N is the number of QPM periods) was observed. (see Chapter 3)
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Figure A.1: Examples of tuning curve distortion in four different experimental devices.

For many applications, distortion of the tuning curve is often more serious than

67
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reduced peak efficiency. In optical communication devices, broadened peaks and

enhanced sidelobes may cause interchannel crosstalk. The 1/N -floor of the transfer

function is responsible for photons generated by parametric fluorescence far from

phasematching, a problem in photon-counting experiments. [69] With high optical

power, those photons generated by non-phasematched SHG can also alter, temporarily

or permanently, the properties of waveguides through photorefractive processes.

These effects originate from two main categories of fabrication errors: perturba-

tions to the waveguide and to QPM domain boundaries. In-depth study has been

carried out on QPM domain boundary errors. [16] This appendix presents a theoret-

ical study of deterministic and random perturbations to waveguides and their impact

on tuning curve shapes. Although we restrict the examples to SHG, it can be readily

extended to the cases of other nonlinear interactions.

A.1 Methodology

Starting from the formal solutions of the coupled-mode equations in the low conversion

limit, the tuning curve of a device with spatially varying phase mismatch, normalized

to that of an ideal device of the same length L, |g(Ω)|2, can be calculated by [16]

|g(Ω)|2 = | 1
L

∫ L

0
ei∆φ(z,Ω) dz|2 (A.1)

∆φ(z, Ω) =
∫ z

0
∆β(z′, Ω) dz′, (A.2)

where Ω is the detuning from a reference frequency ω0, L is the length of the device

and ∆β(z, Ω) = β(z, ω0 + Ω) − 2β(z, ω0/2 + Ω/2) − kg, where kg is the grating k-

vector, is the effective wavevector mismatch between the interacting waves. In order

to calculate g(Ω) it is necessary to specify the form of ∆β(z, Ω), and hence ∆φ(z, Ω).

The simplest form of ∆β(z, Ω) is independent of z. In this case, the integral for g(Ω) is

trivial, resulting in g(Ω) = ei∆βL/2sinc[∆β(Ω)L/2], reproducing the well known result

for phasematching in a homogeneous medium or with a uniform QPM grating. We

shall later examine devices with specified forms of ∆β(z, Ω) of practical or illustrative
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importance.

∆β can be expanded in a Taylor series in δw, the deviation of the waveguide

width from its nominal value w. When ∆β has a first order dependence on δw,

the phasematching can be considered critical, whereas when ∆β has only a second

order dependence on δw, the phasematching is considered noncritical. [25, 27] In our

analysis below we distinguish perturbations to these two different types of waveguides.

We also provide numerical examples in the context of PPLN devices. The “error-

free” prototype is a RPE PPLN waveguide that has a uniform QPM period of 16

µm, 625 periods (1-cm long), and either a 5-µm critical width or 8-µm noncritical

width. For deterministic perturbations, we relate the theoretical results to measurable

parameters (waveguide width, exchange dose, QPM wavelength, etc.) using a 2-

dimensional waveguide model. [27] For random perturbations, we generate an actual

device by introducing random errors in local wavevector mismatch, ∆β, and simulate

its tuning curve rigorously by tracking the phase of the SH wave generated by each

QPM domain and summing those waves at the output. We also numerically calculate

the averaged performance of the randomly perturbed waveguide ensemble.

A.2 Systematic Perturbations

Linear taper

The prototypical systematic perturbation is a linear variation in ∆β with respect

to z:

∆β(z, Ω) = δνΩ +
δβM

L

(
z − L

2

)
, (A.3)

where Ω = ω − ω0 is chosen such that at the center of the device ∆β(L/2, 0) = 0, δν

is the GVM parameter, and δβM is the difference in ∆β from one end of the device

to the other. The accumulated phase error is

∆φ(z, Ω) =

(
δνΩ − δβM

2

)
z +

δβM

2L
z2. (A.4)

The tuning curve can be calculated with Eqs. (A.1) and (A.4), and expressed in
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terms of Fresnel integrals C(z) and S(z),

|g(Ω)|2 =
[C((1 − ζ)a) + C(ζa)]2 + [S((1 − ζ)a) + S(ζa)]2

a2
, (A.5)

where a =
√

δβML/π and ζ = 1/2− δνΩ/δβM . The function is plotted in Figure A.2

for several values of δβML. The symmetric widening of the tuning curve is due to the

fact that a band of frequencies are locally phasematched at different locations along

the propagation direction, as a result of tapering. The effect is similar to that of a

linearly chirped QPM grating.
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Figure A.2: Systematic perturbation: linear tapers.

A linear taper in ∆β can result from a waveguide mask with a linear width taper

if the design is critical, or when a gradient of exchange dose, due to a temperature

gradient in the exchange bath, for example, exists over the length of the waveguide.

As there are different origins of errors, we quantify the magnitude of error by a shift

in local phasematching wavelength δλQPM(z). In the above-mentioned prototype

device, the perturbation ∆βML=10 and 50 correspond to maximum δλQPM of ±0.8
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and ±4 nm, respectively, at either end of the waveguide. If it is due to a width taper,

it corresponds to width changes of ±0.1 and ±0.5 µm, respectively, at either end,

around a critical width of 5 µm.

Quadratic taper

∆β sometimes has the form of a quadratic taper with respect to z:

∆β(z, Ω) = δνΩ +
2δβM

L2

(
z − L

2

)
, (A.6)

Again ω0 is phasematched at the center of the device. The additional wavevector

mismatch at both ends due to the taper is δβM/2. So with Eq.(A.2)

∆φ(z, Ω) = δνΩz +
2δβM

3L2

(
z − L

2

)3

+
δβML

12
. (A.7)

Evaluation of the integral in Eq.(A.1) leads to an expression containing incomplete

Gamma functions. The tuning curve is plotted in Figure A.3, with parameter δβML.
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Figure A.3: Systemetic perturbation: quadratic tapers.
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With an 8-µm noncritical waveguide width, any width change moves the wavevec-

tor mismatch toward one direction, and a quadratic taper in ∆β is a good approx-

imation for a linear taper in waveguide width. In this case δλQPM=0.8 and 4 nm

correspond to width changes of 1 and 3.2 µm, respectively, at either end. We see

that at the noncritical point, the tolerances for dimensional errors are substantially

increased. As the taper gets steeper, the tuning curve becomes more asymmetric and

its peak shifted to one side, because a quadratic taper moves all local phasematching

wavelengths toward one direction.

Periodic perturbation

Another interesting class of perturbations vary periodically in z. Prototypical of

these is a sinusoidally varying wavevector error of the form

∆β(z, Ω) = δνΩ + δβM sin(Kβz). (A.8)

The accumulated phase error is found to be

∆φ(z, Ω) = δνΩz + r[1 − cos(Kβz)], (A.9)

where r ≡ δβM/Kβ. The tuning curve takes the form

|g(Ω)|2 =

∣∣∣∣∣ 1

KβL

∫ KβL

0
e

i

[
δνΩ
Kβ

x−r cos(x)

]
dx

∣∣∣∣∣
2

. (A.10)

If we assume for simplicity that L is an integral multiple of the modulation half-period,

i.e. KβL = mπ, and use standard integral representations of the Bessel functions, we

obtain

|g(Ω)|2 = J2
δνΩ/Kβ

(r). (A.11)

It is plotted in Figure A.4 with detuning and parameters m and δβML. In general,

a periodic modulation splits the tuning curve. This is similar to the phase-modulated

QPM gratings, where domain centers are shifted in a controlled manner to generate

multiple phasematching peaks, and the shorter the modulation period, the larger the

split. [49]
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Figure A.4: Periodic perturbations. Top: a device contains 2 modulation half-periods;
bottom: 20 modulation half-periods.
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A.3 Random Perturbations

In many practical cases, we have only statistical information about the perturbations.

In this section we study the tuning behavior in randomly perturbed waveguides, given

only statistical information about ∆β along z. We choose the reference frequency ω0

such that for this frequency, without random perturbations, the wavevector mismatch

∆β0(Ω = 0) is zero. We assume the z-dependent perturbation distribution is the

same for all Ω, so we can use the simplified notations without the explicit argument

Ω. The total wavevector mismatch is the sum of the effects of tuning (∆β0 = δνΩ)

and random perturbation (∆βr(z)), i.e. ∆β(z) = ∆β0 + ∆βr(z). Furthermore, we

assume that ∆βr(z) is stationary with respect to z, and has an autocorrelation length

Λ small compared to L. Defining 〈f〉 as the mean value of a random function f and

{f} the ensemble average of f , we assume ergodicity so that 〈f〉 = {f}. The analysis

we apply here borrows heavily from the discussion of random QPM period error in

Ref. [16].

We begin the analysis by deriving an expression for |g|2 that is more convenient

for statistical evaluation. With Eqs. (A.1) and (A.2) we have

|g|2 =

[
1

L

∫ L

0
ei∆φ(z) dz

] [
1

L

∫ L

0
e−i∆φ(z) dz

]
=

1

L2

∫ L

0
dz
∫ L

0
e−i[∆φ(z)−∆φ(z′)] dz′.

(A.12)

Dividing the inner integral into two parts, 0 ≤ z′ ≤ z and z ≤ z′ ≤ L and, for the

first of these double integrals, reversing the order of integration and exchanging the

dummy integration variables, and then recombining the two double integrals results

in

|g|2 =
2

L2

∫ L

0
dz
∫ L−z

z
cos[∆φ(z + z′′) − ∆φ(z)] dz′′. (A.13)

To this point, we have simply reformulated an exact expression for |g|2. Since we have

only statistical information about the waveguide, we are interested in the ensemble

average of |g|2, which, with Eq.(A.13), is given by

{
|g|2
}

=
2

L2

∫ L

0
dz
∫ L−z

z
{cos[∆φ(z + z′′) − ∆φ(z)]} dz′′. (A.14)
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To make further progress, we must include information derived from the distribu-

tion function of ∆βr(z). Since it is assumed stationary, the argument of the cosine

may be replaced by ∆φ(z′′) , and Eq.(A.14) becomes

{
|g|2

}
=

2

L2

∫ L

0
dz
∫ L−z

z
{cos[∆φ(z′′)]} dz′′. (A.15)

To evaluate the ensemble average appearing in the integrand, we need to know

p[∆φ(z)], the distribution function of ∆φ(z).

For critical phasematching, ∆βr(z) ∝ δw(z), where δw(z) is the random variation

in waveguide width. If we assume that δw(z) is normally distributed, ∆βr(z) are as

well, and ∆βr(z) = 0. We can take p[∆φ(z)] to be

p[∆φ(z)] =
1√

2πσφ(z)
e−[∆φ(z)−∆φ(z)]2/2σ2

φ(z), (A.16)

where ∆φ(z) and σφ(z) are the mean and the variance of ∆φ(z), respectively. So

{cos[∆φ(z)]} =

∞∫
−∞

p[∆φ(z)] cos[∆φ(z)] d∆φ(z) = e−σ2
φ
(z) cos[∆φ(z)], (A.17)

where the second form of Eq.(A.17) follows from the first with Eq.(A.16) and a

standard definite integral. With Eq.(A.17), Eq.(A.15) takes the form

{
|g|2
}

=
2

L2

∫ L

0
dz
∫ L−z

z
e−σ2

φ(z′′)/2 cos[∆φ(z′′)] dz′′. (A.18)

With Eq.(A.2) it is clear that

∆φ(z) = z∆β = z∆β0. (A.19)

Calculation of σφ(z) is somewhat more involved. Define ∆φr(z) ≡ ∆φ(z) − ∆φ(z),

so that the variance σφ(z) is given by

σ2
φ(z) =

{
[∆φr(z)]2

}
. (A.20)
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To evaluate Eq.(A.20), we ask what is the ensemble average of the square increment

between z and z + Z. With Eq.(A.2), we have

{
[∆φr(z + Z) − ∆φr(z)]2

}
=

⎧⎨⎩
[∫ z+Z

z

(
∆β(z′) − ∆β

)
dz′
]2
⎫⎬⎭

=

⎧⎨⎩
[∫ z+Z

z
∆βr(z

′) dz′
]2
⎫⎬⎭

=
∫ z+Z

z
dz′
∫ z+Z

z
{∆βr(z

′)∆βr(z
′′)} dz′′. (A.21)

Defining s ≡ z′′ − z′, Eq.(A.21) can be written as

{
[∆φr(z + Z) − ∆φr(z)]2

}
=
∫ z+Z

z
dz′
∫ z−z′+Z

z−z′
Br(s) ds, (A.22)

where the autocorrelation function Br(s), defined as

Br(s) = {∆βr(z)∆βr(z + s)} , (A.23)

is independent of z if the statistics of ∆βr(z) are stationary. To evaluate Eq.(A.22),

divide the inner integral into two intervals, z − z′ ≤ z′′ ≤ 0 and 0 ≤ z′′ ≤ z − z′ + Z ,

change the order of integration in both the resulting double integrals, to obtain

{
[∆φr(z + Z) − ∆φr(z)]2

}
=
∫ Z

−Z
(Z + s)Br(s) ds (A.24)

As long as we are interested in increments Z long compared to the autocorrelation

length Λ, we can use the property of the autocorrelation function that Br(s) → 0 for

s >> Λ to neglect s with respect to Z over the entire range over which the integrand

is appreciable, and to extend the limits of integration in Eq.(A.24) to ±∞. With

these assumptions, Eq.(A.24) becomes

{
[∆φr(z + Z) − ∆φr(z)]2

}
= Z

∫ ∞

−∞
Br(s) ds. (A.25)

Noting that the RHS of Eq.(A.25) is independent of z, this result can be generalized
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to write Eq.(A.20) as

σ2
φ(z) = z

∫ ∞

−∞
Br(s) ds. (A.26)

From Eqs. (A.19) and (A.26), we see that both ∆φ(z) and σ2
φ(z) grow linearly with

z. For the following discussion, it is convenient to define a constant, Γ, such that

Γ =
1

Λ 〈∆β2
r 〉
∫ ∞

−∞
Br(s) ds. (A.27)

This choice of normalization is based on two properties of the autocorrelation function,

Br(s), i.e. that Br(0) = {∆β2
r} = σ2

∆β and that Br(s) has a characteristic width Λ,

so that Γ is of order unity. Γ is not strongly dependent on the form assumed for the

autocorrelation, as is seen below

Br(s) = σ2
∆β

⎛⎜⎜⎜⎜⎜⎜⎝
rect(s/Λ)

e−(s/Λ)2

e−|s|/Λ

[1 + (s/Λ)2]
−1

⎞⎟⎟⎟⎟⎟⎟⎠⇒ Γ =

⎛⎜⎜⎜⎜⎜⎜⎝
2√
π

2

π

⎞⎟⎟⎟⎟⎟⎟⎠ (A.28)

We can cast Eq.(A.18) in the form

{
|g|2
}

=
2

L2

∫ L

0
dz
∫ L−z

z
e−Sz′′/L cos(Fz′′/L) dz′′ (A.29)

= 2D−2
{
F 2 − S2 + SD + e−S

[(
S2 − F 2

)
cos(F ) − 2SF sin(F )

]}
,

where

S =
1

2
ΓΛLσ2

∆β (A.30)

F = ∆βL = δνΩL (A.31)

D2 = F 2 + S2 (A.32)

{|g|2} is plotted in Figure A.5 as a function of detuning Ω for different values of

S, a measure of disorder defined in Eq.(A.30). It should be noted that the tuning

curve of a particular device chosen from an ensemble with given F and S does not

necessarily resemble the ensemble average of the tuning curves. The breadth of the
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ensemble average is in large part due to the distribution of peaks in the ensemble

rather than the breadth of the tuning curve of individual elements in the ensemble,

as the numerical examples in Figure A.6 show. Also note that the magnitude of

the random error, σ2
∆β , and the autocorrelation length Λ are interchangeable in the

expression for S, so that large magnitude and long-range perturbations will have the

same effect.
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Figure A.5: The ensemble average of the tuning curves for SHG in waveguides with
random perturbations. The parameter S, a measure of the magnitude of the pertur-
bations, is defined in Eq.(A.30).

For noncritical phasematching, ∆βr(z) ∝ δw(z)2. This nonlinear relation causes

a nonzero mean ∆βr(z) by “rectifying” the random function δw(z). Now ∆β(z) =

δνΩ + ∆βr(z), manifesting a shift of the phasematching peak. It is difficult to make

general statements about the variance and autocorrelation, as these involve fourth-

order correlations of δw(z). Furthermore, ∆βr(z) and ∆φ(z) are no longer normally

distributed, so an analytical form of {|g|2} are not easy to obtain. Using the numerical

method, we see that the perturbations shift the phasematching wavelengths to one

side. (Figure A.7)

The perturbations randomly change the local phasematching wavelengths, so the

center peak is distorted and broadened, whereas the effects on the tuning-curve wings

are small. This is confirmed by Figure A.8.
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Figure A.6: Numerical examples of random perturbation to a critically phasematched
waveguide, assuming Λ = 1 mm, an autocorrelation function rect(s/Λ), and S = 5.
The three individual curves (dashed) are from the ensemble with the same statistical
properties. The theoretical (dotted, calculated using Eq.(A.29)) and numerical (solid,
calculated by averaging 100 tuning curves from the same ensemble) ensemble average
curves agree well.
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Figure A.7: Numerical examples of random perturbation to a noncritically phase-
matched waveguide, assuming Λ = 1 mm. The ensembles are calculated by averaging
100 curves with the same statistical properties.
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Figure A.8: Numerical examples of random perturbation to a noncritically phase-
matched waveguide, with different autocorrelation lengths, holding σ2

∆β constant,
together with the ensemble average of S = 2. Even when the magnitude of perturba-
tion is large enough to clearly shift and distort the peaks around the phasematching
center, the effect on the tuning-curve wings is small.

A.4 Summary

We have examined the effects of various departures from an ideal waveguide. The

tuning properties were obtained analytically for each type of perturbation, i.e. lin-

ear and quadratic tapers, periodic modulation, and random waveguide errors. It is

interesting to note that the effects of waveguide perturbations are most noticeable

around the phasematching center, because in the expressions of both ∆β and ∆φ,

with large enough detuning, the contribution of detuning dominates the contribution

of perturbation. In other words, waveguide perturbations are mostly responsible for

near-phasematching tuning-curve distortion, rather than off-phasematching photon

generation. The latter is discussed in Appendix B.



Appendix B

Off-phasematching Photon

Generation in QPM Gratings with

Random Duty-cycle Errors

At least two types of random perturbation are of interest to a QPM grating. If a

collection of plates of varying thickness are stacked to form the structure, the error

in the position of the kth boundary is the sum of the errors in the thickness of all

the previous layers, so that the errors grow with k in the manner of a random walk.

This is called random period error. We note its similarity with random waveguide

perturbations described in Appendix A. In both cases, the phase errors accumulate

along the propagation direction, and the same statistical approach applies.

With the commonly used periodic-poling technique, however, QPM domains are

defined by a photolithographic mask, which maintains the average position of the

boundaries with uniform accuracy across the device, but local effects randomly per-

turb the position of each boundary, so the probable error in the kth boundary is

independent of k. We refer to this type of structure as having a random duty-cycle

error. In the context of lithographically patterned PPLN devices, only the random-

duty-cycle error is of practical interest to us, since the long-range order is precisely

controlled by the lithographic mask.

81
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Both types of errors are studied in-depth in Ref. [16]. Instead of being a stand-

alone study, this short appendix extends the results in the above reference to analyze

off-phasematching photon generation in the context of random duty-cycle errors. The

cited numbered equations all refer to those in Ref. [16].

Considering an error-free prototype device with N periods and the ith boundary

at position zi,0, and an actual device with variance of domain length σ2
Λ, We calculate

the efficiency of the actual device normalized to the peak efficiency of the ideal device

|g|2 ≡ η/ηideal. According to Eq.(56),

{
|g|2
}

=
1

N
+

2

N2

N−1∑
k=1

N−k∑
p=1

{cos(∆Φk,p)}, (B.1)

where ∆Φk,p ≡ Φk+p −Φk is the phase error accumulated between layers k and k + p.

For duty cycle errors, the errors in the boundary positions have zero mean and are

independent and stationary with respect to k. Eq.(63) shows that the mean and

variance of ∆Φk,p are

{∆Φk,p} = δ∆k(zk+p,0 − zk,0) = px (B.2)

σ2
φ ≡ σ∆Φk,0

= ∆k2
0σ

2
Λ, (B.3)

where ∆k0 ≡ π/Lc is the wavevector mismatch at the design wavelength, δ∆k = δνΩ

is the additional mismatch due to frequency detuning Ω, and x ≡ δ∆kmΛ with m

being the order of phasematching. The independence of statistical quantities on k,

due to the stationary assumption, allows us to drop the subscript k and use a simpler

notation. For normally distributed errors, Eq.(65) shows

{cos(∆Φk,p)} = e−σ2
φ/2 cos({∆Φp}). (B.4)

With the above equations we have

{
|g|2
}

=
1

N
+

2

N2
e−σ2

φ
/2

N−1∑
k=1

N−k∑
p=1

{cos(px)}
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=
1

N
+

2

N2
e−σ2

φ
/2

N−1∑
k=1

eix

eix − 1

[
ei(N−k)x − 1

]

=
1

N

(
1 − e−σ2

φ
/2
)

+ e−σ2
φ
/2 sin2(Nx/2)

N2 sin2(x/2)
, (B.5)

where the second form follows from the first by rewriting the cosine as the sum of

exponentials and summing a geometrical series, and the last is from long yet straight-

forward algebra. In the error-free limit, {|g|2} → sin2(Nx/2)
N2 sin2(x/2)

. It is not exactly a

sinc-square known for a uniform grating, but the mth peak of the numerator is at

x = 2π(m + 1/2)/N << 1 for N >> m, so the denominator is close enough to

(Nx/2)2, and to good accuracy over the range of interest {|g|2} ≈ sinc2(Nx/2). On

the other hand, with large random error, σφ >> 1, we have {|g|2} → 1/N . (This

is because with large random error the device works like the incoherent sum of N

domains, and η scales with N , while ηideal of the error-free grating scales with N2.)

It is most interesting to look at the practical case where σφ is between the two limits.

Near the phasematching peak, the second term dominates with a peak height reduced

by e−σ2
φ
/2, while with large detuning, the first term dominates, and the tuning curve

exhibits a floor of the order 1/N , regardless of tuning. We can also see from Eq.(B.5)

and the definition of x that no matter how small σφ is, with large enough detun-

ing, the first term will eventually dominate: a smaller random error pushes the floor

further from the phasematching center. In contrast to the effects of waveguide per-

turbations discussed in Appendix A, random duty-cycle error has a most noticeable

effect on off-phasematching photon generation. A numerical example and theoretical

calculation are compared in Figure B.1.

A last note is on the validity of Eq.(32), which is the underlying assumption of

Eq.(B.1). It assumes the quadratic term of phase error, δ∆kδz, where δz is the

domain boundary error, is small compared to π. For a typical C-band PPLN device

with σΛ as large as 1.5 µm, the above assumption is valid over a tuning bandwidth

of more than 1000 nm.
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Figure B.1: Numerically calculated tuning curve for a specific example of randomly
perturbed QPM devices compared to an ideal QPM device. The device has 1000 do-
mains, and randomness characterized by the parameter σΛ. In addition, the ensemble
average calculated using Eq.(B.5) with σφ = 1.3 is compared to the average of 100
curves of σΛ = 3.2 µm. (Assuming a 15-µm QPM period, according to Eq.(B.3) the
above σφ and σΛ are equivalent.)
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