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High-speed high-resolution fiber diameter variation

measurement system

Martin M. Fejer, Gregory A. Magel, and Robert L. Byer

A fiber diameter variation measurement system is described which is capable of measuring transparent fi-
bers with 0.02% diameter resolution and 6-um axial resolution at a measurement rate of 1 kHz and with a
working distance of >100 mm. The principles of its operation are discussed in detail, and éxperimental con-
firmation of its performance is reported. A theoretical calculation of the optimum obtainable diameter res-
olution for a given set of experimental parameters is also presented.

i. Introduction

There is considerable current interest in the growth
and application of single crystal fibers for nonlinear
optical, miniature laser, and acoustic devices.!# Our
efforts to apply the miniature pedestal growth tech-
nique!” to the growth of refractory oxide fibers have
shown that closed-loop control of the fiber diameter is
necessary to achieve the diameter control requisite for
useful device applications.

The crystal growth process involves melting the tip
of a source rod with a tightly focused CO- laser, dipping
the seed crystal into the melt, and then effecting a di-
ameter reduction by pulling the seed more rapidly than
feeding in the source. Since there is no viscous draw-
down region, small scale diameter variations tend to be
frozen into the fiber instead of being stretched to long
periods and low amplitudes as in glass fiber pulling. It
is thus necessary to measure the fiber diameter with
high axial resolution in addition to good diameter res-
olution. The COs laser focusing optics and the short
thermal time constant of the molten zone impose ad-
ditional constraints on the working distance and mea-
surement rate.

While the diameter control tolerances and the growth
parameters depend in detail on the material and device
application involved, the following criteria specify a
measurement system useful for a broad range of crystal
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fiber applications: diameter variation resolution better
than 0.1% for fiber diameters between 20 and 500 um;
axial resolution better than 10 um; working distance
>100 mm; and measurement rate faster than 100 Hz.
The forward scattering pattern from a fiber illumi-
nated by a laser beam perpendicular to the fiber axis can
be used to measure the diameter of the fiber.6 A fiber
diameter measurement device based on counting the
number of fringes scattered into a particular angular
range has been described previously.” While the speed
and resolution of the above system are suitable for our
application, the optical system for imaging the requisite
large 60° angular range becomes quite unwieldy at
100-mm working distances. Moreover, the lack of any
provision for axial resolution, i.e., selection of a thin
section whose diameter is to be measured, limits the
usefulness of the previous diameter measurement ap-

. proach for single-crystal fiber growth. The remainder

of this paper describes the design of the electronic and
optical systems developed to implement fiber diameter
variation measurements. Experimental verification of
the system performance is also presented.

. Measurement Approach

It is possible to simplify substantially the optical
system by accurately tracking the position of the center
of a single fringe scattered at a large angle rather than
attempting to count a large number of fringes. An an-
amorphic optical system can be used to obtain improved
axial resolution by focusing the laser beam perpendic-
ular to the fiber axis. ;

A simplified diagram of the fiber diameter measure-
ment approach is shown in Fig. 1. A plane wave of
wavelength A illuminates the fiber. A fringe scattered
at an angle 0 is imaged onto a photodiode array by a lens
of focal length f in a Fourier transform configuration.
The center-to-center spacing of the elements of the
diode array is s.
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Fig. 1. Schematic of the fiber diameter measurement approach. An

incident plane wave of wavelength X scatters off a fiber. The resulting

interference pattern is projected by a lens of focal length f onto a
photodiode array with element spacing s and element width d.

To determine the resolution of the system, it is nec-
essary to calculate the shift in angle of a peak due to a
given change in fiber diameter.

A. Transparent Fiber

As discussed in Ref. 6, the fringe spacing of an unclad
transparent fiber can be described analytically by
considering the path length difference A(f) between
rays refracted through and reflected off the fiber at a
given angle 6 as shown in Fig. 2. The interference be-
tween these rays in the far field gives rise to a series of
approximately sinusoidal fringes. The power scattered
per unit angle at an angle f can be written as

P(8) = a1(6) + a2(6) cosk A(D), (1)

where k = 27/\. An approximate ray optics calculation

of the amplitude functions a;(f) and as(6) is presented

. in the Appendix. The path length difference A(9) is
en by$

A(8) = 2p[sin}s8 + (n2? + 1 — 2n coslsh)1/2] + /4, 2)

where n is the index of refraction of the fiber, and p is
the fiber radius.

From Egs. (1), (2), and (A13)-(A16) it can be shown
that a,(f) and a2(6) vary sufficiently slowly that it is
adequate to take the maxima of the scattering pattern
to lie at the maxima of the cosine function in Eq. (1).
The angular position 8; of the jth bright fringe is then
given implicitly by

kAB)) =2x( + jo), (3)
where A(6 = 0) = (jo + 8)A, and where j is an integer
and 6 < 1.

The change in position on the diode array of the jth

fringe Ax in response to a change Ap in the fiber radius
is

w.
=—LfAp. 4)
ap

With our detection system, the minimum resolvable
position change is the diode spacing s. Thus the min-
imum resolvable radius change is

Apmm aa})l . (5)

We can calculate d6;/dp from Egs. (2) and (3) and
“1d

o

Fig. 2. Geometry of reflected and transmitted rays that interfere

to form the fringe pattern. The path difference between AB and CD

is given by A(6) in Eq. (2) when 8, =6, =48. Angles and lengths in-

dicated are used in the Appendix to calculate scattering amplitudes
a1(f) and a2(0) referred to in Eq. (1).

q(n,8)

6 0.2 04 06 0.8 1,0 (.2 1.4
G(rod)

Fig. 3. Plot of sensitivity function g(n,8) defined by Egs. (6) and (7).
Solid lines show g(n,0) vs 8 for various values of n.

== - (8)
dp  p cos'el; + n(n? + 1 ~ 2n coskf;)1/2 sinlkf,

If we write this relationship in the form

%="g ~Un,b8;), )]
dp
we arrive at a simple form for the diameter resolu-

tion:

36; -2 sinlef; + (n%+ 1 = 2n coslhf;)!’?

(ﬂ) =% snh)). ()
p |min f

The function g(n,f) is plotted in Fig. 3 and is seen to be
bounded for cases of interest by 0.3 < g < 1.3.

Note also that the resolution is independent of the
laser wavelength. The qualitative explanation is that
for a given Ap, the decrease with wavelength in the
number of fringes below 6, is exactly canceled by a
larger fractional shift per frmge leading to exactly the
same shift in the position of the jth peak.

For a transparent fiber with n = 1.5 and a measure-
ment system with s = 50 um, f = 100 mm, and §, = 1.2
rad, we find from Fig. 3 that g = 0.63 and calculate from
Eq. (8) that (Ap/p)min = 3.2 X 1074,
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Fig.4. Schematic diagram of the fiber diameter measurement optical
system.

The dynamic range limitation occurs when the fringe
moves off the diode array which consists of M elements.
This occurs for (Ap/p)max = £(M/2)(s/f)g(n,0;), where
we have chosen to track the fringe originally at the
center of the array.

For M = 512 and the other values as above, we cal-
culate that (Ap/p)maz = +£8%.

B. Opaque Fiber

The scattering pattern of an opaque fiber can also be
written in the form of Eq. (1). It can be shown from
scalar diffraction theory that for § = A\/mw,, where w
is the beam waist in the plane perpendicular to the fiber
axis, that

Po)
2% 52 o2’
where Py is the incident laser power and that

A8) = 2p6 — (N2). (10)

Since there is no refracted ray, the physical interpre-
tation of A given earlier obviously no longer applies.

From Egs. (3), (7), and (10) it is found that for an
opaque fiber,

a,() = a2(0) = (9)

g(n,0) = g(® = 1/8. 1y
lil. Optical System

A. lllumination

A block diagram of the optical system is shown in Fig.
4. The arrangement for illuminating the fiber consists
of a prism beam expander and a cylindrical lens to
provide the transverse focusing necessary for axial
resolution. A 120-mm focal length cylindrical doublet
and an input beam waist of 8 mm were chosen to meet

PHOTODIODE INPUT | BOXCaR GATE

the working distance specification and provide a line
focus halfwidth of 3 um with a He-Ne laser beam. The
fiber position is tightly controlled in our apparatus, so
it is not necessary to expand the beam in the direction
perpendicular to the fiber axis.

B. Imaging the Fringe Pattern

The Fourier transform lens projects the fringe onto
the photodiode array and determines the diameter
variation resolution of the system through Eq. (8). It
also serves to reduce the sensitivity of the fringe position
on the diode array to movement of the fiber. In the
absence of lens aberration there is no first-order varia-
tion of sensitivity across the diode array beyond that
caused by g/ and no first-order dependence of fringe
position on the diode array on fiber position. Using a
100-mm focal length plano-convex Fourier transform
lens leads to a 1% variation of sensitivity across the de-
tector and a theoretical window for fiber motion of
several hundred microns without an error of magnitude
s in fringe position. A spherical doublet corrected for
infinite conjugate ratio was chosen, which significantly
reduces these effects as is discussed in Sec. VL.

The final cylindrical lens, in conjunction with the
Fourier transform lens, concentrates the light onto the
photodiode array.

IV. Electronics

The purpose of the electronic system is to lock onto
one of the peaks of the interference pattern and track
the location on the diode array of the center of that peak
as it moves in response to diameter changes in the fiber.
This task is complicated by the variations observed in
peak amplitude and contrast ratio.

Figure 5 is a schematic of the electronic system de-
signed to track an interference fringe. The output of
the photodiode array, a section of which is shown in Fig.
6(a), is a series of 512 voltage levels clocked serially at
a 0.5-MHz rate. The measurement is initiated by
choosing a single fringe near the center of the photo-
diode array. The window signal [Fig. 6(b)] brackets the
chosen fringe of the interference pattern and gates the
boxcar integrator, whose output [Fig. 6(c)] is the average
voltage of the bracketed fringe. The comparator output
thus changes state on the steeply changing portions of
the fringe signal. Control circuit 1 in Fig. 5 latches the
output of the counter at the rising and falling edges of
the comparator output that occur during the window
interval. The sum of the two latch outputs thus rep-

ARRAY INTEGRATOR
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Fig. 6. Typical electronic signals: (a) output of a section of the

photodiode array; (b) window signal bracketing fringe to be tracked:;

(c) output of boxcar integrator equal to the average value of the fringe
selected by the window signal.

resents twice the value of the center of the fringe.
Control circuit 2 compares this value of the center to the
previous measurement. If the difference is too large,
the measurement is assumed to be due to an anomalous
optical or electronic event, and the output is not
updated. If the new point is valid, the current fringe
Position measurement is transferred to the output and
the window position is changed by the same increment.
This cycle repeats every scan of the diode array, ie.,
approximately once per millisecond,

The signal thus derived contains information only on
diameter changes, not absolute diameter. If absolute
diameter information were desired, additional signal
processing would be necessary. At the beginning of a
measurement, one absolute determination of the di-
ameter would be made. Changes in the diameter would
be measured using the technique described here. The
accuracy of the diameter measurement would be de-
termined by the accuracy of the absolute measurement
technique, while the speed and resolution of the mea-
surement would be determined by the fringe tracking
system. Thus, a relatively slow method, e.g., the Fou-
rier transform technique of Ref, 8, could be used for the
absolute diameter measurement without adverse effect
on the measurement rate.

V. Optimum Resolution

The linear increase in diameter resolution with the

cal length of the Fourier transform lens predicted by
Eq. (5) reaches an ultimate limit due to noise and non-
uniform sensitivity of the elements of the photodiode
array. To see where this limit occurs, it is necessary to
calculate the focal length for which the difference in the
output voltages of the adjacent photodiodes at the
comparator threshold is less than the noise. The volt-
age output of the mth element of the photodiode array
is given by

Vin =;RMTP(0,")+UM, (12)

where 8,,, is the angular position of the mth element, R,,
is the responsivity of the mth element (in volts per

Joule), 7 is the measurement time interval, d is the width
of an element of the arra » Um I8 the noise voltage on the
mth element, and P(9) is given by Eq. (1).

The difference in the output of adjacent diode ele-
ments is

0V, = m+1= Vi (13)
or

6Vm = (;) T[P(0m+1)Rm+1 - P(om)Rm] + (U1 — Um). (14)

Keeping only terms up to first order in a Taylor series
expansion of P(O) we have

d dP|
6Vm = (—f-) T [;Rm Evm + (Rm+1 - R,,.)P(&m) + (Um+1 - Um)‘

(15)

The first term in Eq. (15) can be evaluated from Eq. (1).
If we assume da,/df « askdA/30, we have

0V=U+E, (16)
where

sd dA
U= FTRMGZ(am)k -E o s

E= ; T(Rm+l - Rm)al(om) + (Um+1 = Um).

The first term U in Eq. (16) is the result for an ideal
noiseless uniform diode array, while E represents de-
viations due to nonuniform response and noise. Note
that U decreases more rapidly with f than does E. If
fopt is chosen so that U = E, there is a one-diode un-
certainty in the location of the peak center. Thus we
can find the optimum focal length f,p, for a given ob-
servation angle 6 by solving

U(foptva) =E (foptyo)~ (17)

Noting the relation between (Ap/p) and fopt given in Eq.
(8) and using Egs. (16), (17), and (A12), we obtain a
quadratic equation for the maximum usable resolution
at a given angle:

0= —[a‘«lh(l9)/‘g2](A,o/p)2 + (51/21rg)(6R/R)()\/p)(Ap/p)
+ (2v/ 2x)~HEo/Por)(s/d)(wo/p)(M/p), (18)

where 0R/R is the fractional variation of the photodiode
responsivity and

10A
f) = ——
h(6) P

= cos('%0) + n sin(f)(n2+ 1 - 2n coslpf)=172,

Here Ey = R,,v,, is a noise equivalent energy, and a
and @, are the dimensionless scattering coefficients
defined in Egs. (A13) and (A14). Solving Eq. (18) for
(Ap/p) and minimizing the result with respect to 6 yield
Bopt, the optimum 6 for a given experimental situation.
Substituting fope into Eq. (18) yields (Ap/p)opt, the
optimum resolution.

Figure 7 plots Bopt vs the log of a dimensionless pa-
rameter ¢ defined by

OR\{Por d Aﬂ)lﬂ
= S Rt VL et | el A R 19
€= (2m3) (R)(Eosw (19)
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Fig. 7. Scattering angle for highest resolution for several values of
n vs loge, where ¢ is a dimensionless parameter defined by Eq. (19)
characterizing the relative importance of nonuniform photodiode
responsivity and noise. Note that the optimum angle is not a function
of fiber diameter.

which characterizes the relative importance of non-
uniform responsivity and noise of the photodiode array.
For large ¢, i.e., for cases where noise is unimportant, Oopt
approaches large values, where the fringe contrast is
maximum while for small ¢, i.e., for cases where nonu-
niformity is unimportant, 8,,, approaches smaller val-
ues where the intensity of the fringes is maximum. The
normalized optimum resolution as defined by

—_— Pord 1/2
Bo70)opt = (Bp/P)opt (2\/—21r —E"—’ —1)%) (20)

0 § Wo
is plotted in Fig. 8.

For Po=2mW, 7 = 1 msec, Eg = 0.1 pd, d/s = 1, w,
=0.8mm, p =0.1 mm, n = 1.5, 6R/R = 0.05, and other
diode array parameters as in the previous example, we
calculate fop; = 1 rad, (Ap/p)opy = 4 X 1075, 8(1.5,05p1)
=0.71, and fope = 0.89 m.

Equation (17) can also be solved for an opaque fiber
using Egs. (9), (10), and (16). For cases of interest the
diode noise effects are much more important than the
nonuniformity. In this limit the optimum resolution

-is given by
(ﬂ) =T (Pﬁo_ﬂz)m : @1)
ploot 2\Por p d
Note that these resolutions are a theoretical upper
bound. Various practical considerations, such as lens
aberrations, minimum acceptable dynamic range,
background light, and adaptability to a variety of fibers
and diameters, are often more serious limits than the
diode noise and nonuniformity.

Vi. Experimental Results

The apparatus was set up as described in the previous
sections. The photodiode array consisted of 512 ele-
ments that were 25 um wide and on 50-um centers.
The array was clocked at a 0.5-MHz rate so that one
scan was completed in 1 msec. The focal length of both
the cylindrical and Fourier transforming lenses was 120
mm. This latter value was a compromise between a
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Fig. 8. Logarithm of normalized optimized resolution (Ap/p)ep:
[defined by Eq. (20)] for several values of n vs loge. [e is defined by
Eq. (19).]

number of conflicting criteria and, therefore, did not
coincide with the focal length that would provide the
optimum resolution. A variable attenuator was in-
serted between the 2-mW He-Ne laser and the beam
expander to prevent saturation of the photodiode array.
Typically the laser power was in the 0.5-1.5-mW range.
Measurements were made at 8 values of 24 and 63°.

The scale factor g given by Eq. (8) was checked by
using an optical microscope. We measured the diam-
eter vs position along several tapered fibers using both
the fringe tracking system and an optical microscope.
An experimental g factor was obtained by fitting the
fringe tracker results to the microscope measurements.
For both sapphire (n = 1.76) and glass (n = 1.47) fibers,
at both 6 = 24° and 6 = 63°, and for diameters ranging
from 100 to 350 um, the experimental g factor agreed
with the theoretical result, Eqs. (6) and (7), to better
than 10%. For example, the measured g factor at § =
63° was 0.68 + 0.07 for a glass fiber with n = 1.47, while
the g factor calculated with Eq. (8) was 0.71. Small
discrepancies may have occurred due to the slight el-
lipticity of the glass fibers or the slightly hexagonal
shape of the sapphire fibers.

The output of the diameter measurement system was
monotonic plus or minus a one-bit jitter for scans of a
smoothly tapered glass fiber. Since the output of the
fringe tracker was monotonic, and the experimental and
theoretical g factors were in good agreement, it is rea-
sonable to assume that the resolution is given correctly
by Eq. (8) for our experimental arrangement.

Figure 9 shows a scan of a 350-um diam glass fiber
compared to measurements made using an optical mi-
croscope. Figure 10 shows a scan of a 50-um diam ruby
fiber grown by the crystal growth apparatus under
open-loop conditions.

A constant diameter glass fiber was mounted on an
x-y stage to measure errors due to motion in the plane
perpendicular to the fiber axis. At both the 24 and 63°
measurement angles a one-bit error window of 11 mm
along the axis of the incident beam and 1.5 mm per-
pendicular to the axis of the incident beam was mea-
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Fig. 10. Diameter change vs length for a 50-um diam ruby fiber
grown under open-loop conditions by the fiber growth apparatus
described in Ref. 1.

sured. The former limit is due to lens aberration, while
the latter is due to curvature of the phase front of the
He—Ne beam in the direction perpendicular to the fiber
axis. This latter window could be enlarged by colli-
mation of the beam in that direction.

Vil. Conclusion

We have designed and built a fiber diameter variation
measurement system which has measured the diameter
variation of transparent fibers having diameters be-
tween 25 and 300 um, with 0.02% diam resolution and
6-um axial resolution at a 1-kHz measurement rate and
with a working distance of >100 mm. Modifications,
such as a longer focal length Fourier transform lens,
could increase the diameter resolution by 1 order of
magnitude. This device is being used to provide real
time measurements of the diameter variation of sin-
gle-crystal refractory oxide fibers during growth.
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Appendix: Ray Calculation of Fringe Amplitudes

To obtain the amplitude of the fringe pattern of a
transparent fiber, it is necessary to combine the am-
plitudes of the reflected and refracted rays, taking into
account the phase difference between them.? The
power scattered between § and 8 + df is given by

P(0) = P,(6) + P.(6) + 2\/P,(8)P. () cosk A(0), (A1)

where P,(6) and P,(0) are the power per unit angle in
the reflected and transmitted rays, respectively.

We assume the geometry shown in Fig. 2 with a uni-
form incident power per unit length I to obtain P, and
P,. From conservation of energy it is clear that

dx, ()

r =] ’ A2
PO = 1R0) |7 (A2)
p@ =170 |2, (A3)

I

where R(0) and T(6) are the power reflection and
transmission coefficients.

If we assume that the incident beam of total power
P, is Gaussian with a halfwidth wy, which is much larger
than the fiber radius a, then I = (2/7)2(Po/wo). The
necessary geometrical relationships to calculate the
other quantities appearing in Egs. (A2) and (A3) can be
obtained from Fig. 2 and Snell’s law. We see that

do L. (A9)
dx, psing
Since 8, = 2¢, we can immediately write
de, -2
;1'; om0 p sinlih, . (A5)
Noticing that
8: = 2(Bo — B1), (A6)
where
B1 = sin~x./np), (A7)
Bo = sin~(x/p), (A8)
we obtain
dx.|e:=¢  pl\cosBe n cosBy

R and T can now be obtained from Fresnel’s equations.
Assuming the incident light to be polarized parallel to
the fiber axis, we have

sinlsf — n cosy\2?
= |[— ], Al0Q
#6) inkf + n cosy) (410
4n cosfo cosfy ]2
T(0) = |——"-"——->—] (Al1)
@ (cosBy + n cosfh)?

where v = sin~1[(1/n) cos'%8)].
Finally, we can combine Eqgs. (A1)-(A11) to obtain

2\1/2 [ p -
P(8) = Py (;) (;)‘0) [@1(0) + @2(0) cosk A(9)], (A12)

where @;(0) and @2(0) are given by the following equa-
tions:

1 1
a0 = Y {ﬁ(ﬂ) sin(9) + TO) |—— -

)_l]; (A13)
\cosfp 1 cosf
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1 1
cosfo

~1] v/
< Tl = [7{(0)7(0) sin(%#0) ) 1]12‘ (A14)

n COSﬁ]

The fringe amplitude coefficients a, and a, appearing
in Eq. (1) in Sec. II are then given by

1/2
a1(6) = Py (?-) (i) a.(0), (A15)
T, w

04

2)1/2 pY_
as(0) = Py (—) (—) a»(9). (A16)
Ky Wwo
These results are also used in Sec. V to calculate the
optimum resolution of the diameter measurement

system.
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