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Quasi-Phase-Matched Second Harmonic Generation: 
Tuning and Tolerances 

Martin M. Fejer, G. A. Magel, Dieter H. 

Abstract-Quasi-phase matching is a technique for phase 
matching nonlinear optical interactions in which the relative 
phase is corrected at regular intervals using a structural peri- 
odicity built into the nonlinear medium. The theory of quasi- 
phase-matched second harmonic generation is presented in both 
the space domain and the wave vector mismatch domain. De- 
partures from ideal quasi-phase matching in periodicity, wave- 
length, angle of propagation, and temperature are examined to 
determine the tuning properties and acceptance bandwidths for 
second harmonic generation in periodic structures. Numerical 
examples are tabulated for periodically poled lithium niobate. 
Various types of errors in the periodicity of these structures are 
then analyzed to find their effects on the conversion efficiency 
and on the shape of the tuning curve. This analysis is useful for 
establishing fabrication tolerances for practical quasi-phase- 
matched devices. A method of designing structures having de- 
sired phase-matching tuning curve shapes is also described 
which makes use of varying domain lengths to establish a vary- 
ing effective nonlinear coefficient along the interaction length. 

I. INTRODUCTION 
OME technique to maintain the relative phase be- S tween the interacting waves must be employed to ob- 

tain efficient conversion in optical second harmonic gen- 
eration and other nonlinear optical processes. Quasi-phase 
matching (QPM) was devised independently by Bloem- 
bergen et al .  [ l ]  and Franken and Ward [2] for this pur- 
pose. This invention, which actually predates the devel- 
opment of birefringent phase-matching, corrects the 
relative phase at regular intervals by means of a structural 
periodicity built into the nonlinear medium. A particu- 
larly effective type of periodic structure is one in which 
the sign or magnitude of the nonlinear coefficient is mod- 
ulated throughout the material. 

Several experimental demonstrations of quasi-phase- 
matched optical second harmonic generation (SHG) have 
been made. It was recognized early that multidomain fer- 
roelectric crystals could show an enhancement of SHG 
[3]. Rotationally twinned crystals of ZnSe, ZnS, and other 
materials were considered for the enhancement of SHG 
by several researchers in the early 1970’s [4]-[6]. Levine 
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et al .  [7] applied a periodic electric field to liquid nitro- 
benzene to modulate its nonlinear susceptibility for phase 
matching. Alternating stacks of thin plates of CdTe [8], 
GaAs [9], [lo], quartz [ l l ] ,  and LiNb03 [ l l ]  were con- 
structed by several researchers for QPM SHG experi- 
ments. In recent years, LiNb03 [12], [13] and LiTa03 
crystals [ 141 and single-crystal fibers [ 151 having period- 
ically alternating ferroelectric domain structures have been 
grown for application to QPM SHG. It has also been sug- 
gested that QPM may account for the surprisingly high 
SHG efficiencies sometimes observed in glass fibers [ 161, 
[17], and, in fact, periodic electric fields have been inten- 
tionally applied to enhance SHG in silica fibers [18]. 

The results derived in this paper should be useful for 
analyzing the behavior of practical QPM devices pro- 
duced by crystal growth, by the stacking of polished 
plates, by integrated-optic technology in LiNb03 [ 191, 
[20], LiTa03 [21], KTP [22], or poled nonlinear optical 
polymer materials [23], or by other field-induced meth- 
ods. Although we restrict the analysis to second harmonic 
generation, it can be readily extended to the cases of other 
nonlinear interactions which can be quasi-phase matched. 

We begin with an introduction to the concept of QPM, 
and derive basic results which will be used in later sec- 
tions. A region of one sign of the nonlinear coefficient is 
called a “domain” in analogy with the ferroelectric do- 
mains which can be used for this purpose in lithium nio- 
bate (LiNb03). In Section 11, perfectly periodic alternat- 
ing domain structures with planar domain boundaries are 
assumed, and the acceptance bandwidths for tuning the 
period, fundamental wavelength, angle of propagation 
through the structure, and temperature are calculated. 
Numerical examples are given for periodically poled 
LiNb03. Various types of deviations from perfect one- 
dimensional geometrical periodicity are then analyzed in 
Section 111. The form of phase-matching tuning curves, 
and a method of designing structures having desired tun- 
ing curves, are described in Section IV. Finally, in Sec- 
tion V, periodic phase-matching techniques based on 
modulation of both the linear and nonlinear susceptibili- 
ties are discussed. 

A. Quasi-Phase Matching (QPM) 
In SHG, a fundamental wave with frequency wl and 

wavelength X interacts with the second-order nonlinear 
susceptibility of a material to produce a polarization wave 
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at the second-harmonic frequency w2 = 2 w l .  Since the 
polarization wave is forced by the fundamental wave, it 
travels with the same velocity, determined by n, ,  the in- 
dex of refraction at the fundamental wavelength. The po- 
larization wave radiates a free second-harmonic wave 
which travels at a velocity determined by 4 ,  the index of 
refraction at the harmonic wavelength. In general n2 > 
nl because of normal dispersion in the material, so that 
the fundamental and second-harmonic waves travel at dif- 
ferent phase velocities. Since the sign of power flow from 
one wave to the other is determined by the relative phase 
between the waves, the continuous phase slip between 
these waves caused by their differing phase velocities 
leads to an alternation in the direction of the flow of 
power. This situation is illustrated by curve C in Fig. l(a). 
It can be seen that the alternation of the sign of power 
flow leads to a repetitive growth and decay of the second- 
harmonic intensity along the length of the interaction. The 
distance over which the relative phase of the two waves 
changes by ?r is the “coherence length” I, = X/4(n2 - 
n , )  which is also the half period of the growth and decay 
cycle of the second harmonic. If the refractive indexes 
can be matched by some means, for example by using the 
birefringence of an anisotropic material, the second-har- 
monic field grows linearly with distance in the medium, 
and thus the intensity grows quadratically, as shown by 
curve A. This condition is called “phase matching.” 

Another method for enabling continuous growth of the 
harmonic wave along the device, called QPM involves 
repeated inversion of the relative phase between the forced 
and free waves after an odd number of coherence lengths. 
The phase is thus “reset” periodically so that on average, 
the proper phase relationship is maintained for growth of 
the second harmonic. One way to invert the phase is to 
change the sign of the nonlinear coefficient. This can be 
done, for example, by forming a stack of thin wafers of 
the nonlinear crystal, rotating altemate wafers by 180”. 
A more practical approach in ferroelectric crystals like 
LiNb03 involves forming regions of periodically reversed 
spontaneous polarization Ps (“domains”). In materials in 
which the second-order nonlinearity is induced by an ap- 
plied electric field, e.g., polymers and liquids, the field 
can be reversed periodically along the interaction length. 

The most rapid growth of the second harmonic, and 
hence the greatest conversion efficiency, is obtained by 
changing the sign of Ps (and thus the sign of the nonlinear 
coefficient) every coherence length. This situation, which 
we shall call first-order QPM, is illustrated by curve B1 
in Fig. l(a). Third-order QPM, in which Ps is switched 
every 31,, is shown by curve B3 in Fig. l(b). Note that 
even-order QPM can also occur when different domain 
lengths are mixed. For example, second-order QPM can 
be obtained by using alternating domain lengths of 1, and 
31,. In general, mth order QPM entails modulation with 
period 2mlc, where m is an integer. 

The above explanation of QPM is a purely “space-do- 
main” description. An alternative view of the effect is 
obtained by Fourier transformation, so that one examines 
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Fig. 1. Effect of  phase matching on the growth of second harmonic inten- 
sity with distance in a nonlinear crystal. (a) A: perfect phase matching in 
a uniformly poled crystal; C. nonphase-matched interaction; 8, :  first-order 
QPM by flipping the sign of the spontaneous polarization every coherence 
length of the interaction of curve C.  (b) A: perfect phase matching; B,: 
third-order QPM by flipping Ps every three coherence lengths. 

the addition of the wave vectors associated with the trav- 
eling light waves and with the domain structure, which is 
a grating in the nonlinear coefficient. This view turns out 
to be mathematically convenient and often aids the intui- 
tion as well. For example, phase-matching occurs when 
the sum of the wave vectors of the fundamental waves and 
the nonlinear grating add to equal the wave vector of the 
second-harmonic wave. It will be easily recognized from 
the Fourier viewpoint that any periodic structure of the 
nonlinear coefficient which possesses a spatial harmonic 
with the proper wave vector can accomplish QPM. Thus, 
complete sign reversal of the nonlinear coefficient is not 
required, but simply a modulation of the magnitude of the 
nonlinear coefficient, with sign reversal being a special 
(and the most efficient) case. 

As can be seen in Fig. l(a), the second-harmonic power 
generally grows more slowly even using lowest order 
QPM than it does with birefringent phase matching. The 
greatest advantage of QPM lies in its ability to accomplish 
phase-matching which would otherwise be impossible: in 
isotropic materials, or in materials which possess in gen- 
eral either too little or too much birefringence at the wave- 
lengths of interest; or using nonlinear coefficients which 
couple waves of the same polarization. Another important 
feature is the ability to design a device for operation at 
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desired wavelengths and temperatures. In addition, the 
various acceptance bandwidths, as discussed in Section 
11, can be significantly enhanced for interactions making 
use of the proper polarizations. The additonal wave vector 
in the problem makes noncritical phase matching possible 
in situations where it would not be otherwise, often in- 
creasing the angular acceptance bandwidth considerably. 
Table I lists various bandwidths, along with the coherence 
lengths and magnitudes of the relevant nonlinear coeffi- 
cients, for SHG at three different fundamental wave- 
lengths in LiNb03. Note that structures which accomplish 
QPM SHG can also be used to phase-match degenerate 
parametric oscillation or amplification, e.g. , the quan- 
tities given for SHG with a 2.12 pm fundamental wave- 
length apply as well to degenerate optical parametric os- 
cillation using a 1.06 pm pump. 

It should be noted that phase-matching may also be 
achieved by modulation of the Linear susceptibility [26]- 
[30]. These techniques have been difficult to implement 
because the amplitude of the linear index modulation must 
be comparable to the dispersion in order to achieve effi- 
cient conversion. The analysis in this paper focuses on 
structures with modulation of the nonlinear properties. 
Because the wave vector of the periodic structure required 
to accomplish QPM is the same for modulation of either 
the linear or the nonlinear properties, the analysis of Sec- 
tion I1 and the results in Table I concerning the tuning 
behavior and phase-matching bandwidths of periodic non- 
linear structures should apply equally well to both cases. 
Other features of “linear” QPM are discussed briefly in 
Section V, where it is shown that many of the properties 
of such devices are essentially the same as those for con- 
ventional QPM. 

B. Theoretical Approach 

The basic theory of QPM has been discussed by several 
authors, with emphasis on various nonlinear optical ap- 
plications [9], [3 11-[34] and traveling-wave electrooptic 
modulators [35]. In addition, extensions of the theory have 
been made to include the effects of pump depletion [36] 
and tight focusing [37]. The difficulty in achieving prac- 
tical QPM devices results from the stringent tolerances 
placed on the periodic structure, so an analysis of the ef- 
fects of departures from ideal QPM is important. The 
purpose of this paper is to investigate these effects, which 
have not been comprehensively discussed in the litera- 
ture. 

In this paper, we analyze SHG as the prototypical sec- 
ond-order nonlinear interaction. We assume low conver- 
sion efficiency, loose focusing, CW or long-pulse inter- 
action and no losses for the fundamental or second 
harmonic waves. Under these conditions, the results for 
sum or difference frequency generation are essentially the 
same as those for second harmonic generation, if the ap- 
propriate definition of the phase mismatch is used. 

The basic slowly varying amplitude equation governing 
the growth of the second-harmonic field under these con- 

TABLE I 
FWHM ACCEPTANCE BANDWIDTHS FOR SHG I N  CONGRUENT LITHIUM 

NIOBATE~ 
~ ~~ 

x 4 6X 6 T  8Y 6vd 
(pm) Coeff.’ (j” (nm) (K) (mrad) (mrad) 

- 
4.26 
1.67 
1.42 
03 

129 

3.40 
2.92 

W 

14.4 

15.6 

13.4 

- - - - 
0.89 6.0r 176 79 
0.72 13.7/ 112 103 
0.60 17.4/ 104 104 

3.18 11.1 03 102 
3.11 9.4 959 103 

2.04 25.8 158 146 
1.74 64 147 147 

2317 9.7 01 213 
(303) 

40 27.5 317 139 
(183) 

62 193 337 306 

55 379 311 311 

(916) 

(203) 

(455) 

“All values calculated for a 1 mm long crystal using Sellmeier fits from 
[24] for T = 25°C except where noted. Values in parenthesis are from 
numerical calculations where the linear approximation from (25) is inac- 
curate. 

bd31(B) = d31, type I, birefringently phase matched; magnitude: 5.9 pm/V 
d,l,Q, = 2d,,/ir, QPM; effective magnitude (d, from (23) with m = 
1): 3.8 pm/V 
d,,,,, = 2d3,/*, QPM; effective magnitude: 21.6 pm/V 
dz2(,, = 2 d Z 2 / r ,  QPM; effective magnitude: 2.6 pm/V 

‘Rotation around crystallographic z axis; n, invariant, (41) applies. 
dRotation around crystallographic x or y axis; n, varies with Y, (A1.9) 

applies. 
‘Birefringent phase matching cannot be achieved at any temperature for 

this short a wavelength. 
fCalculated using Sellmeier coefficients from [25] because temperature 

dependence from 1241 cannot be accurately extrapolated to blue wave- 
lengths. 

RAll values on this line calculated at Tpm = - 19.4”C. 
hAll values on this line calculated at Tpm = 580.3”C. 

ditions is 

- -  dE2 - r d ( z )  exp ( - iAk’z)  
dz 

where E2 is the amplitude of the second-harmonic field, z 
is the distance along the propagation direction, d ( z )  is the 
spatially varying nonlinear coeffcient for SHG, r = 
iwE:/n2c,  subscripts 1 and 2 refer to quantities associ- 
ated with frequencies w and 2 w ,  respectively. Ak’, the 
wave vector mismatch caused by dispersion in the mate- 
rial, is defined by 

Ak’ E k2 - 2kl = x / l c  (2) 

where kl and k2 are the wave vectors at the fundamental 
and the second harmonic, respectively, and L, = X/4(n2 
- nl) is the coherence length. Integrating (l), we find that 
the second harmonic field at the end of a sample of length 
L is given by 

E2(L) = r j” d ( z )  exp (-iAk’z) dz. (3) 
0 
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For perfect conventional phase matching, i.e., for d(z) = 
deff and Ak’ = 0, the integral in (3) is trivial, and we find 
that the second harmonic field is given by 

E2(L) = rdeffL. (4) 
For QPM interactions, (3) can be analyzed either in 

terms of the real-space function d(z), or, as may seem 
natural from the form of the integral, in terms of the Four- 
ier transform of d (2) .  Consider first the real space descrip- 
tion. Assume that d (z) consists of domains of nonlinear 
coefficient fdeff with sign changes occurring at the posi- 
tions zj. Let gj be the sign and 4 the length of the j t h  
domain. In this case, (3) may be integrated to obtain 

(5) 
where N is the number of domains. The sign changes in 
a perfect structure occur at positions zk,O which are chosen 
to satisfy 

e-’AkOzk,O = (- l)k (6) 
where Ak; is the wave vector mismatch at the design 
wavelength, e.g., for symmetrical odd-order QPM zk,o = 
mkl, and for even-order QPM, zk.0 = (mk + (- l )k )  1, [see 
discussion after (23)]. Phase errors can accumulate due 
either to deviations of the structure from the prototype or 
deviations of Ak‘ from the design value. Defining the po- 
sition error of the kth boundary as 8zk = z k  - Zk.0, and 
the deviation of the wave vector mismatch from that at 
the design point as AA k‘ = A k’ - A k& the accumulated 
phase error at the kth boundary +k is given by 

+k = Ak’Zk - Ak;Zk,O z Ak‘8zk + 6Ak’Zk.O (7) 
where the second form neglects a term quadratic in the 
errors. With (7) we can write ( 5 )  for the output field E2 
as 

As the contribution of the final two terms of (8) is smaller 
than that of a single period, in most cases of interest, i.e., 
for N >> 1, we can approximate (8) as [36], 

(9) 

which we use extensively in Section 111. For a perfect 
structure, i.e.,  one with Gj = 0 for 1 < j < N ,  the sum 
in (9) is just N .  Noting that for a perfect structure N = 
L/ml, = LA k’/ma, (9) becomes 

Comparing (4) and (lo),  we see that in an interaction with 
perfect mth order QPM, the effective nonlinearity is re- 
duced by a factor of 2 / m a  compared to that of a conven- 
tionally phase-matched interaction. 

Another approximate form convenient for computation 
can be obtained by noting the similarity, for symmetrical 
odd-order QPM, of the quantity in square brackets in (8) 
to the trapezoidal rule approximation to the integral of a 
continuous function +(z) chosen such that 

+(zk,O) = @k (11) 

i.e. by noting that 
N -  1 c e -i+r + - ( e  1 - i a N  + 1 ) = -  l L  e-i+(z )  dz. (12) 
k =  I 2 ml, o 

The error in this approximation, which can be shown with 
the usual analysis applied to numerical quadrature to typ- 
ically scale as + / N 2 ,  is negligible in many practical sit- 
uations. Combining (12) with (8) and (lo),  we have 

(13) E2/E2,ideal = - 1 dz. 

This integral form is particularly convenient for the cal- 
culation of tuning curves, as seen in Section IV. Equation 
(13) can similarly be shown to apply for nonsymmetric 
odd- and even-order QPM. 

Now consider the Fourier transform approach. Let us 
write the normalized form of d(z) as 

l L  
L o  

g(z) E d(z)/deff (14) 

and generalize the previous calculation by allowing g (z) 
to take any value between -1 and 1 for 0 < z < L. 
Equation (3) than takes the form 

E2 = rdeffLG(Ak’) (15) 

where G(Ak’), the transform of g(z), is given by 

G(Ak’) = - g(z) exp (-iAk’z) dz. (16) 

Since G is a function of Ak’, we refer to the transform 
domain as the “mismatch domain,” and G(Ak’) as the 
“mismatch function.” [38] Comparing (4) and (15), we 
see that the magnitude of the mismatch function, which 
is less than or equal to 1, represents the reduction in the 
effective nonlinearity compared to a conventionally phase- 
matched medium. Since the squared magnitude of the 
mismatch function is proportional to the conversion effi- 
ciency, it is, up to a scale factor in the abscissa, the same 
as the tuning curve obtained by varying A k’ with temper- 
ature, wavelength, etc. 

If g(z) is a function periodic in z with period A, i.e., 

L o  ‘ S  

01 

whose mth-harmonic grating wave vector 
27rm K =-  

“ A  
is close to Ak’, the integral in (16) is dominated by the 
contribution of this mth term, and (15) thus can be written 

(19) E2 = ie-AkL/21’dQL sinc (AkL/2) 
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where dQ = deffG,,, is the amplitude of the relevant har- 
monic of d ( z ) ,  

A k  E k2 - 2kl - K,,, (20) 
is the total wave vector mismatch, and sinc (x) = sin 
( x ) / x .  The behavior of the QPM interaction is similar to 
that of a conventionally phase-matched interaction, but 
with an effective mismatch A k shifted by an amount K,,, 
with respect to A k ' ,  and an effective nonlinear coefficient 
dQ in place of deff .  

As an example of the utility of thinking in the mismatch 
domain, we determine the effect of duty cycle on the con- 
version efficiency. Let g ( z )  be a rectangular wave of pe- 
riod A taking the values k l ,  with the positive sections of 
length 1. The duty cycle is defined by 

D = l / A .  (21) 
Assuming that the +m term of the complex Fourier series 
for g ( z )  is phase matched, i.e., assuming K,,, = Ak' ,  the 
corresponding Fourier coefficient is found using a stan- 
dard transform pair to be 

G,,, = sin (IrmD). 
?rm 

Since do = deffG,,,,  we find that at optimum D ,  for which 
the sine factor is unity, 

in agreement with the real space result in (10). The con- 
version efficiency, proportional to d;,  is thus reduced by 
(2  / ?rm)* compared to a conventionally phase-matched in- 
teraction. Equation (22)  also shows that the optimum duty 
cycle for odd m is 50%. (Actually, as m grows larger, 
there is more than one optimum duty cycle which makes 
the sine term equal to 1 .) The fact that the optimum D for 
m = 2 is 25% or 75% agrees with the result stated earlier 
that second-order QPM corresponds to altemating do- 
mains of l, and 31,. 

11. TUNING AND BANDWIDTHS IN PERIODIC 
S T R U c T U R E s 

To evaluate the utility of quasi-phase-matched devices 
for practical applications, it is important to establish tol- 
erances for variations in temperature, wavelength, etc. by 
evaluating their effects on the efficiency of the device. For 
a device of total length L containing uniform periods, the 
phase-matching factor in the expression for the power 
conversion efficiency is, according to (19) ,  sinc2 
( A k L / 2 ) ,  so that the QPM peak has the same shape as 
that of conventionally phase-matched device, but has been 
shifted by the wave vector of the periodic structure away 
from the bulk value of A k ' .  We may use the fact that this 
factor goes to 1 /2 when A k L / 2  = 0 . 4 4 2 9 ~  to find the 
full width at half maximum (FWHM) acceptance band- 
widths for several quantities which affect A k when they 
are varied. It is also of interest to calculate how rapidly 

the phase-matched wavelength tunes with variations in the 
parameter r. 

In general, A k as a function of a parameter r and the 
wavelength X may be expanded in a Taylor series about 
the value ro which achieves QPM for X = Xo (so that 
M l O ,  Xo) = 0): 

Note that the form of the second term in (24)  explicitly 
takes into account that K is independent of A. If A k has a 
first-order dependence on I ,  then we usually may neglect 
the higher-order terms in the expansion. The FWHM 
bandwidth in r, which we will denote by 6 { ,  is found by 
fixing X = Xo and solving (24)  for the value of ({ - lo) 
which satisfies A k L / 2  = 0 . 4 4 2 9 ~  and then doubling it. 
This procedure gives 

We will use this result throughout this section to calculate 
bandwidths for period, fundamental wavelength, angle of 
incidence, and temperature. The rate at which the phase- 
matched wavelength tunes with can be obtained by set- 
ting (24)  equal to zero and solving for (A - &) in terms 
of ( c  - lo). We find 

aA k / a {  
A - x  O - - a A k ' / a x  ( r  - (00) 

where the second form follows from the first and (25). 
The analysis in this section is directed to collinear or 

nearly collinear interactions. Interaction between counter- 
propagating beams, which are possible in QPM devices, 
are discussed briefly in Appendix 111. 

A. Constant Period Error 
Let the domain structure be perfectly periodic but with 

the wrong period A 5: 2ml,, near that required for mth- 
order QPM. Writing (20)  as 

21rm 
A A k  = Ak'  - - 

we obtain 

Thus, the FWHM acceptance width for the period is, ac- 
cording to (25)  and (28) ,  
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where N = L / m l ,  is the number of domains in the sample. 
When the conversion efficiency has dropped to half, i.e., 
when the error in period is 6A/2, the accumulated error 
in the position of the Nth domain boundary is N6A/4 = 
0.8861,, independent of the order of the QPM. 

B. Spectral Bandwidth 
Since tuning the fundamental wavelength X has no ef- 

fect on the periodicity of the structure, the only contri- 
bution to the derivation of Ak comes from the material 
term Ak’ .  The result for the spectral bandwidth, obtained 
from (18) and (24) with = A, is 

where the derivatives are evaluated at their respective 
wavelengths. Note that the term (n2 - n l ) / X  in (30) for 
QPM vanishes in the similar expression for conventional 
phase matching, because n2 = nl in the latter case. 

The indexes and dispersion can be obtained numeri- 
cally, for example, from published Sellmeier fits for the 
material being used. Table I contains a column comparing 
spectral bandwidths for SHG in LiNb03 for various po- 
larizations and wavelengths. At longer wavelengths the 
bandwidths tend to increase because of the decrease in 
dispersion. 

C. Angle Tuning and Angular Acceptance 
The QPM condition depends on the angle between the 

grating vector K and the fundamental wave vector k, . The 
implications of this effect are similar to those of the an- 
gular dependence of the extraordinary index of refraction 
in a birefringently phase-matched device. It is both a 
means for tuning the phase-matching condition and a lim- 
itation on the angular acceptance bandwidth. As QPM is 
often carried out in birefringent crystals, both QPM ef- 
fects and birefringence effects can occur simultaneously. 
We will first analyze QPM in an isotropic medium to un- 
cover those effects due purely to QPM, and then briefly 
discuss the modifications necessary for QPM in anistropic 
crystals. 

Consider first the phase-matched case, with the geom- 
etry indicated in the wave vector diagram of Fig. 2(a). 
The angle within the sample between the fundamental 
wave vector kl and the periodic structure wave vector K 
is 8, where for notational convenience we use K rather 
than K,,, to indicate the spatial harmonic contributing to 
the QPM. The angle rC. between kl and the wave vector of 
the forced second harmonic wave, and hence the angle 
between kl and the QPM free second harmonic wave, can 
be calculated from Fig. 2(a) and the law of sines. We find 

K 
sin $ = - sin 8 (31) 

k2 

so that if 8 # 0, then J /  # 0 and the phase velocity of the 
second harmonic output will not be parallel to the fun- 

tx 

(b) 
Fig. 2. Wave vector diagram for QPM angle tuning analysis. (a) Phase- 

matched case. (b) Nonphase-matched case. 

damental input. While the effects of this “walkoff” on 
the efficiency of the interaction are similar to those of a 
walkoff in a conventional birefringently phase-matched 
interaction, it is important to note that in the case of QPM 
the walkoff is related to the phase velocities of the inter- 
acting waves (wave vectors) and can occur in isotropic 
media, while the walkoff in the conventional case is re- 
lated to the group velocity (Poynting vectors) and occurs 
only in anisotropic media, In either case, the walkoff re- 
duces the efficiency by limiting the interaction length to 
the “aperture length” 1, = T ” ~ W ~ / $ ,  where w1 is the 
Gaussian beam waist of the fundamental [39]. We have 
to this point considered only the positive spatial frequency 
component of the grating K and neglected the negative 
frequency component -K. In general this neglect is jus- 
tified because -K will be far from phase matching. In the 
special case where 8 = 90°, QPM will be possible using 
both K and - K, resulting in two second harmonic beams 
emerging at f II, . 

For a given fundamental wavelength A, the period re- 
quired for mth order QPM at an angle 8 can be found 
using the law of cosines to be 

For 8 = 0, (32) reduces to A = &,, where, in agreement 
with our previous results, 

(33) 

Equation (32) is well approximated by a parabola up to 
angles as large as -0.4 rad. This simpler form is 

(34) 
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A somewhat more accurate expression can be obtained by 
expanding (32) to first order in n2 - n l ,  

tan2 8). (35) 

For values of n 1 / n 2  corresponding to SHG of visible 
wavelengths in LiNb03, we find that (35) is accurate to 
within 1 % of the exact value obtained using (32) for 8 as 
large as 1 rad. 

To determine the dependence of the phase-matching 
wavelength on the angle 8, we evaluate the condition 
2mlc( A) = A,,(@ to lowest nonvanishing order. Near 8 
= 0, we find with (34) that 

where X, is the wavelength which quasi-phase matches 
when 8 = 0. A similar expression can be obtained for the 
phase-matching temperature as a function of angle. 

We now address the question of angular acceptance 
bandwidths due to the periodic domain structure. We as- 
sume that the refractive index is isotropic, or at least that 
the wave vector surfaces are of circular cross-section in 
the plane in which the sample is tilted. This condition 
holds, for example, for both refractive indexes if propa- 
gation is in the plane perpendicular to the optic axis in a 
uniaxial crystal, or for propagation in any plane if the in- 
teraction involves only ordinary waves. The geometry 
considered is shown in Fig. 2(b). The fundamental radia- 
tion propagates with wave vector k1 in the x - z plane at 
an angle v to the normal (z) to the surface of the crystal. 
The grating wave vector lies at an angle 8 to k ,  , and at an 
angle K to z. The free second harmonic wave propagates 
with wave vector k2 at an angle $ to k , .  

For 8 # 0 the situation is analogous to critical phase 
matching, and, according to (25) we need the derivative 
aA k/dv to evaluate the angular acceptance bandwidth. 
With the assumed geometry, the boundary conditions for 
the second harmonic require 

k h  = 2k1, + K, (37) 

and from geometry we have A k = A kt, where 

Ak = kZz - 2k1, - K, (38) 

and subscripts x and z indicate Cartesian components of 
vectors. 

We find from (37) and (38) that the required derivative 
is 

aAk 
- = -2kl sin $/cos (v + $). av (39) 

Evaluating (39) for the phase-matched case and using the 

result in (25), we find for the FWHM angular bandwidth 
- 1  

- - 
I + - - J  cos K K ( e + o )  

COS v 2k1 
5.57 cos v 

KL sin ( K  - v) 
- - 

(40) 
cos v A 

o*886 sin ( K  - v) L 
- 

where the approximate form follows by assuming K << 
2kl. From (40) we see that for critical phase-matching the 
angular bandwidth is inversely proportional to the length 
of the device, and, noting that A / L  = 2/N,  inversely 
proportional to the number of domains. 

Near 8 = 0, Ak has no first order dependence on v ,  the 
QPM is noncritical, and the bandwidth is determined by 
the second order term in (24). Taking the derivative of 
(39) with respect to v, and using the resulting second de- 
rivative in a Taylor series expansion of A k in U, we obtain 
the FWHM angular acceptance for a noncritically phase- 
matched interaction 

6 v  = 2 1.772 - - COS v (8 0). (41) 

We see that the bandwidth for this case depends inversely 
on the square root of the device length, which results in 
a greatly enhanced bandwidth compared to critical phase- 
matching for samples containing many periods. Some an- 
gular acceptance bandwidths for noncritical QPM are tab- 
ulated in Table I. 

These results may be readily generalized to the aniso- 
tropic case, in which the wave vector surfaces are non- 
circular in cross section, as briefly discussed in Appendix 
I. The essential difference between QPM in isotropic and 
in anisotropic media is that in the latter at least one of the 
indexes of refraction depends on U. This dependence has 
a straightforward effect on the angle tuning rate, and also 
leads to Poynting vector walkoff for wave vectors not par- 
allel to an optical axis. It is possible to eliminate walkoff 
(have parallel group velocities) for a structure with 8 # 
0 (which has an angle $ between k2 and k , )  by using a 
propagation direction chosen such that the Poynting vec- 
tor walkoff is equal and opposite to the phase velocity 
walkoff. A similar effect has been observed in conven- 
tionally phase-matched devices using noncollinear angle 
phase-matching for parametric interactions [40], [41]. It 
is clear that the results in this section apply equally well 
to angle tuning in planar waveguides, but must be modi- 
fied for channel devices. In this case, defining 8 as the 
angle between K and the waveguide axis, (35) is replaced 
by A = A. cos (8) from which it follows that (36) with n1 
= n2 correctly describes channel waveguide QPM. Note 
that while Poynting vector walkoff does not occur in this 
configuration, the transverse phase variation due to K, 
must be incorporated into the overlap integral for the 
waveguide interaction. 

4 :::: 
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D. Temperature Bandwidth 
When the temperature is tuned, in addition to the change 

in Ak’ caused by the temperature dependence of the re- 
fractive indexes, thermal expansion can alter both the pe- 
riod A and the total length L of the device. We must there- 
fore take the derivative with respect to temperature of the 
product A k L  instead of A k  alone. Since A k  = Ak’ - K ,  
we have 

- ( A k L )  a = L ( 7  aAk’ - m) aK + (Ak’  - K ) -  aL (42) 
aT aT’ 

With the coefficient of linear thermal expansion (Y defined 
as (Y = I - ‘  al/aT, we have d L / d T  = (YL and dK/dT = 
-OX, so the terms involving K in (42) cancel, leaving 

form G(z)  is approximately 2?r /L ,  so that deviations in 
the domain reversal that cause a comparable or larger shift 
or broadening of the transform will lead to significant re- 
ductions in the conversion efficiency. 

Quantitative analysis of these effects for particular types 
of errors can be carried out in either domain. In the re- 
mainder of this section we use a real space description. 
Results for the second harmonic field E2 and conversion 
efficiency including the effects of various errors are nor- 
malized to the field E2 ideal,  and the conversion efficiency 
Tideal expected for an ideal QPM structure of the same or- 
der m. From (10) we have 

E2,ideal = irg02deffL/mn (45) 

(43) Thus, according to ( 9 ) ,  
N where A n  = n2 - n l .  Note that (43) is independent of the 

period of the domain structure. 

insert (43) into (25 )  to obtain 

(47) 1 C 
I$ E E2/E2,idal = - 

To calculate the temperature acceptance bandwidth, we N k = l  

and 

I UY 

where, as before, A n  = n2 - n l .  As was noted for the 
spectral bandwidth, the fact that QPM allows the use of 
the same polarization for both the fundamental and second 
harmonic can lead to a substantial increase in bandwidth, 
particularly if a refractive index is used whose dispersion 
is relatively temperature insensitive. See Table I again for 
a comparison of temperature bandwidths for SHG in 
LiNb03. Like the spectral bandwidths, thermal band- 
widths increase toward longer wavelengths. 

111. QUASI-PHASE MATCHING IN NONIDEAL 
STRUCTURES 

In this section deviations from regularity in quasi-phase- 
matching structures which tend to reduce the efficiency 
are addressed. Variations in domain length along the di- 
rection of propagation (which we refer to as longitudinal 
variations) cause phase errors which disturb the phase 
matching. For the following analyses, we assume that only 
complete sign reversal of the nonlinear coefficient is pos- 
sible. Thus for longitudinal variations, the domain rever- 
sal pattern g (2)  of (6) takes the form of a rectangular wave 
with a locally well-defined, if not constant, duty cycle and 
period. 

Qualitative understanding of the effects of deviations 
from periodicity in the QPM structure can be obtained 
from the Fourier or “mismatch domain” analysis dis- 
cussed in Section I-B, according to which the second har- 
monic output field is proportional to the component of the 
domain reversal pattern g (2) at the spatial frequency A k’ . 
For an ideal structure of length L the FWHM of the trans- 

where 1, is the second harmonic output intensity and +k 

was defined in (7 )  as the phase error at the kth boundary, 

+k  = Ak’6Zk 6Ak‘Zk,o. (7)  

A.  Missing Reversals 
Flaws in a lithographically defined periodic structure or 

fluctuations during the growth of bulk periodic crystals 
can lead to missing domains. Assuming that the structure 
is not otherwise disturbed, each such missing reversal 
combines three of the ideal domains into one domain an 
odd number of coherence lengths long, thereby reducing 
the total number of domains by 2 .  

According to (9 ) ,  we can write 

(49) 
1 “ - - C e - i”k  

2 -  N k = l  

where N’ is the number of domains in the perturbed de- 
vice. According to the previous discussion, if there are M 
missing domains, N = N - 2 M .  Since all the domains 
are an odd number of coherence lengths long, no matter 
what the distribution of the M missing domains, all the +k 

obey +k = 2 P k ~ ,  where Pk is an integer or zero, so (49) 
can be written 

where f = M / N  is the fraction of domains with sign op- 
posite that of the ideal prototype structure. Since (50) is 
based on the approximate (9 ) ,  it neglects a contribution 
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to E2 on the order of that of one domain. Note that f = 
1/2 represents a single domain structure, for which E2 
vanishes to this level of approximation, whilef = 1 rep- 
resents a perfect structure with each domain of sign op- 
posite that of the prototype, for which the magnitude of 
E2 is unchanged, but the sign is reversed. From (46) and 
(50) we have 

B. Random Errors in Positions of Domain Boundaries 
We now consider a structure which has the same num- 

ber of domains as the prototype, but also has random er- 
rors in the length of the domains. Since we have only sta- 
tistical information about the positions of the boundaries 
of the domains, we can calculate only expected values of 
the various quantities of interest. Before introducing the 
statistical description of the boundary positions, it is use- 
ful to manipulate the expression for the normalized effi- 
ciency given in (48) into a form more convenient for sta- 
tistical analysis. We begin by expressing the squared 
magnitude as a double sum 

The N terms with j = k are all equal to 1 ,  so we can 
separate these terms and sum them explicitly, yielding 

1 

Dividing the inner sum into two parts wi th j  < k a n d j  > 
k, and reversing the order of summation for the latter, 
yields 

- N - 1  N 

Reindexing the inner sum with p = j - k, we have 
N - 1  N - k  

If only statistical information is available for the phase 
errors, we can calculate only ensemble averages of the 
efficiency. With (55)  we obtain 

N - l  N - k  

N - l  N - k  
1 L  

N N k = l p = l  
= - + 7 (COS ( A + k , p ) )  (56) 

where the angle brackets indicte an ensemble average, and 
in the second line we use the notation A+k,p = + k , p  - +k 

for the phase error accumulated between layers k and k + 
p. If the phase errors vanish, the summand is 1, the inner 
sum is trivial, the outer sum is an arithmetic series, and 
the normalized efficiency can be shown to equal unity. In 
the presence of large random phase errors, the sum van- 
ishes, and the normalized efficiency approaches 1 / N ,  as 

would be expected for the incoherent sum of the contri- 
butions of N layers. 

To make further progress, we need to specify the errors 
6 z k  in the positions of the domain boundaries. At least two 
types of randomly perturbed structures are of interest. If 
a collection of plates of varying thickness are stacked to 
form the structure, the error in the position of the kth 
boundary is the sum of the errors in the thickness of the 
all the previous layers, so that the errors grow with k in 
the manner of a random walk. We refer to this type of 
structure as having a random period error. If instead the 
domains are fabricated by a method, e.g., lithography, 
that maintains the average position of the boundaries with 
uniform accuracy across the whole device, but local ef- 
fects randomly perturb the position of each boundary, the 
probable error in the kth boundary is independent of k. 
We refer to this type of structure as having a random duty 
cycle error. 

In both these cases, it is useful to describe the distri- 
bution of domain boundaries in terms of a more readily 
observed quantity, the lengths of the domains, where the 
lengths l k  are given by 

l k  = z k  - 2 k - l  (57) 

so that the errors in the domain lengths 6 l k  are given by 

61, = 6 z k  - 6 z k -  1 . (58)  

Consider first random duty cycle errors. If we assume that 
errors in the positions of the boundaries have zero mean, 
it is clear from (58) that (61,) = 0, and, from the as- 
sumption that the errors in boundary position are inde- 
pendent and stationary with respect to k, that the vari- 
ances are related by 

a: = 20: (59) 

where the now irrelevant k subscript has been suppressed. 
In the case of random period errors, it is useful to re- 

write (57) as 
k 

and hence that 

Assuming that the 61, are distributed with zero mean and 
are indepenent and stationary with respect to k, we have 
( 6 z k )  = 0, and from (61) 

aik = ka:. (62) 

Note that even though the l k  are identically distributed, 
the z k  are not. 

With (57)-(62) and (7), we can obtain the mean and 
variance of A+k,p,  necessary for the evaluation of (56). 
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We find where U: is defined implicitly in (66). Noting that ac- 
cording to (65) and (66) the summand in (55) is inde- 
pendent of p and k,  the summation is trivial and we find = 6Ak'(Zk+p,0 - Z k . 0 )  = GAk'pml, 

((Akh)'ZO: = (Ak, j )2a:  

( perioderrors. 

Note that both the mean and the variance of A@k,p  given 
in (63) are independent of the position k,  depending only 
on the separation of the layers p as might be expected 
from the stationary forms assumed for the errors. This 
behavior can be made explicit using a simpler notation 
dropping the subscript k ,  i.e., (A@., , , )  -+ ( A @ p )  and 

In addition to specifying the mean and the variance of 
the errors, it is necessary to specify their distribution 
function. In general this function is not known a priori, 
so we assume that the errors are normally distributed, 
which both leads to simple mathematical results and has 
some justification from the central limit theorem as a de- 
scription for the sum of independent errors. The proba- 
bility density function for the phase error accumulated be- 
tween layers k and k + p then takes the form 

U i O t , ,  2 

(67) 
1 

N 
(4) = e-a:/2 + - ( 1  - e - u : / 2 ) .  

For a perfect structure (U+ --+ 0), the normalized efficiency 
goes to 1 as it should. For large errors, the normalized 
efficiency approaches 1 / N ,  as is appropriate for the in- 
coherent sum of the output of N layers. For large N and 
moderate errors, the second term in (67) is negligible, the 
normalized efficiency is a function only of U+, and we have 

(4) 5. e - 4 2  

5. 1 - 7r2a:/(213 (68) 

where the second approximation follows from (67) and an 
expansion to lowest order in al. The tolerance on the rms 
error for > 50% conversion is obtained from (68) as 

a , / &  < =/a = 0.375. (69) 

We see that the sensitivity to duty cycle errors is rather 
small, with rms errors as large as one third of a coherence 
length reducing the efficiency by less than 50 % . 

Now consider the case of random period errors. The 
random walk accumulation of phase error both leads to 
substantially greater degradation of the efficiency, and 
complicates the analysis. We may still use (65) to evalu- 
ate (cos ( A @ k + p ) ) ,  but using (63) for we obtain 

(70) o:*, = p7r2a:/lf = p a +  2 

where U+, implicitly defined in (66), is independent of p .  
With (65) and (70), (55) takes the form 

With this probability density function, we can evaluate 
the mean value appearing in the summand of (55 ) :  

(cos ( A @ k + p ) )  = PA+(A@k+p) cos ( A @ k + p )  d A @ k + p  N N 2 k = i  p = i  
(71) 

1 2 N - I N - k  
OD . (4)  = - + - e-P0:/2. 

-m 

S, - - 
*A*,, 

exp (- [A@k+p - (A@p ) I 2 )  
2 d * ,  

* cos (A@k+p)  dA@k+p 

= e-ai*J2 cos ( ( A + ~  )) (65) 

where the first equality follows from the definition of the 
mean value, the second from (63) and (a), and the last 
from a standard definite integral. 

We now have the information necessary to calculate the 
efficiency in the presence of random errors by evaluating 
the sum in (55) .  Assume that the device is tuned to the 
nominal operating point, so that 6Ak' = 0. Consider first 
the case of random duty cycle errors. According to (63), 
the variance of the phase error is independent of p and is 
given by 

(66) a:*, = 7r2a:/1: = a; 

The p dependence of the summand complicates the sum- 
mation. Noting that the inner sum is a geometric series, 
we have 

where the second equality follows by recognizing that the 
sum over k is again a geometric series. To understand the 
implications of (72), we first consider the limit U+ + 0, 
for which the RHS of (72) .+ 1 ,  as expected for a perfect 
structure. Retaining the lowest nonvanishing order in U+ 

we find 

(N - N - ' ) u ;  
6 

(4)  = 1 - (73) 
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so we see that the efficiency begins to drop rapidly when 
the variance for a single domain approaches 1 / N .  If we 
assume that U: < C 1, but not necessarily that Nu: < C 
1, we find from (72) 

In most cases of interest, N is large, while from (74) we 
see that the efficiency is small unless No:  < 1 ,  so we can 
usually neglect the 1 / 6 N 2  term in (74), which then gives 
the efficiency as a function of a single variable Nu;.  Mak- 
ing this assumption, and expanding (74) to lowest order 
in Nu:, we find 

(75) 

where we have used (70) to express U+ in terms of U(.  

Plots of (4) using both the lowest order approxima- 
tion, (75), and the more accurate form, (74), under the 
assumption N > > 1, and the exact form, (72), assuming 
N = 100, are given in Fig. 3. We see that there is negli- 
gible difference between (72) and (74) over the entire 
range plotted, while (75) is accurate only over a rather 
restricted range. From the plot, we see that the tolerance 
on the mean square error for > 50% conversion is No: c 
5.11, or with (70) for U+, 

q / Z C  C 0.72/&. (76) 
We found in (72)-(75) the ensemble average of the con- 

version efficiency at the nominal operating point in the 
presence of random period errors. For perfect structures, 
such operation yields the highest conversion efficiency. 
However, as is discussed in Appendix 11, in imperfect 
structures it is often possible to obtain higher conversion 
efficiency by tuning away from the nominal operating 
point through, for example, temperature, angle, or wave- 
length tuning. If one is interested in the maximum con- 
version efficiency irrespective of operating point, the 
analysis of Appendix I1 can be applied to obtain A kb + 
6AkApt and ijopt, the optimized operating point and the 
conversion efficiency at the operating point, respectively. 
As we are interested here in random errors, one can of 
course calculate only ensemble averages of these quan- 
tities. The statistical analysis proceeds in the same fash- 
ion as that presented for the nominal case above, but is 
rather more complicated. We present here only the results 
in the limit of large numbers of domains and small phase 
errors. We find 

2 
N 

= 1 - -0; 15 = 1 - $ N ( ? )  (77) 

and 
2 

6 N  6n2 N ul (aAk$)  r - - o2 = - - 
5 L2 + 5 L2 ( i ;)  . (78) 

0'4 0.2 1 
1 -  

0 I I I # I n L s n l  . I I 

0.01 1 10 
O.' dm 

Fig. 3 .  Effect of random period errors on normalized SHG conversion ef- 
ficiency, ( 6 ) .  Solid curve is exact expression for Gaussian distribution of 
domain lengths [(71)] where the number of domains, N = 100; dashed 
curve is first approximated given in (75); dash-dotted curve is the approx- 
imation to the optimized efficiency given in (77). Here U, is the variance in 
the period, [,is the coherence length, and N is the number of domains. The 
approximation given by (74) evaluated in the limit N + m is indistinguish- 
able from the solid curve on the scale of this figure. 

(78) gives the breadth of the distribution of optimum op- 
erating points centered around the nominal point. Com- 
paring (77) with (75) as plotted in Fig. 3, we see that the 
optimized conversion efficiency decreases substantially 
more slowly with the magnitude of the period errors than 
does the nominal conversion efficiency, leading to an in- 
crease in the tolerance for the mean square error to Nu: 
c 7.5. Comparison of this tolerance calculated in the 
small error limit against numerical calculations valid for 
errors of arbitrary magnitude indicates that the actual tol- 
erance is approximately 20% greater than that obtained 
from (77). 

D. Linear Taper of Period 
In the growth of periodically poled single-crystals, a 

slow drift in the crystal pull rate or in the modulation fre- 
quency of the boundary position can lead to a correspond- 
ing drift in the poling period along the length of a sample. 
Such a drift can be modeled by a linear taper of domain 
length. Let the total difference in domain length from one 
end of the sample to the other be AL. For a sample con- 
taining N domains the error in length of the j th domain is 
then given by 

(79) 

Here we have assumed that the domain at j = N / 2  is of 
the ideal length. This condition does not in general pro- 
duce the highest conversion efficiency for a given A I (see 
Appendix 11), but is close to the optimum and can be used 
to conveniently investigate the effect of varying the mag- 
nitude of A l .  

With (7), (61), and (79) we have the phase error at the 
k th boundary 

T A  L 
L c j = l  2NLc 

k 
lr 

@k = - C 64 = - [k(k  + 1) - N k ] .  (80) 
Note that the ensemble average of 6AkApt vanishes, so that 
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Rather than attempt to evaluate the sum in (9) for the out- 
put field, we assume that N is large and the phase error 
moderate so that we may apply the approximate integral 
expression given in (13), to find 

where the continuous function @ ( z )  is chosen, according 
to ( l l ) ,  as 
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With (82), appropriate changes of variable allow us to 
cast (81) in the form 

t 
dt 8 - e i r t 2 / 2  j, e-i7rt2/2 

2 -  

where 4 is defined as 

(83) 

and in the second equation the result is expressed in terms 
of the Fresnel integrals defined in [42] .  With (83), the 
normalized conversion efficiency is found to be 

rjtapper = 12 [c2(t) + s2(t)1. (85) E 
A series expansion for small arguments of the Fresnel 

integrals gives 

rjUpper 5 1 - - T 2  E4 = 1 - - N 2  T 2  (?)*. (86) 
45 720 

Equation (85) and its approximation (86) are plotted in 
Fig. 4 as functions of E = 1 / 2  a. From Fig. 4 
we see that the normalized conversion efficiency drops to 
50% when E = 1.318, so we can establish a tolerance for 
linear taper according to 

AI 6.95 
- < -. 
1, N 

(87) 

E. Quantization of Domain Boundary Positions 
If the positions of the domain boundaries can take only 

certain discrete values, due perhaps to quantization in a 
fabrication process such as lithographic mask making, 
then the domain lengths will deviate somewhat from op- 
timum. Let us take q to be_ the increment in domain length 
imposed by quantization, I to be the desired domain length 
(typically mlc) ,  and assume that = ( Q  + E)q, where Q 
is an integer and E is a fraction such that - 1 / 2  < E < 
1/2. For simplicity we assume that H = l / ~  is an even 
integer, though the conclusions we reach are generally 
valid as long as H is not too small. 

1 \ '  ' I '  ' ' ' ' 1 

0 1 2 3 4 5 
5 

Fig. 4. Normalized conversion efficiency i j  as a function of the magnitude 
of the taper for a QPM device with linearly tapered domain thicknesses. 
Solid line is exact calculation of (85),  dashed line is approximation given 
in (86). = is a measure of the taper A l ,  normalized to the 
coherence length 1, and the number of domains N, as defined in (84). 

The desired domain distribution is of course described 
by zZ,, = j i .  With the given parameters, we can construct 
an approximation to the desired structure that deviates by 
no more than 4 / 2  from the desired structure, by placing 
one domain of length (Q + E /  [ E ] )  q between H domains 
of length Qq, so that the structure is periodic with period 
2P + 1 ,  where 2P = H / 2 .  Within such a section, the 
position error of thej th  boundary varies linearly between 
4 / 2  and - 4 / 2 ,  so that we can take the position error to 
be 

6zk+j  = j q / 2 P  -P I j I P (88) 

where k is chosen such that 8zk = 0. In a structure of N 
domains, there will be N p  = N / ( 2 P )  identical sections of 
this type. 

To analyze the effect of such a periodic linear error, we 
turn to (9), modified to account for the periodic error 

where the phase error, with ( 7 )  and (88) is given by 

+j = ( + , / p ) j  (90) 

where +, = Ak' 4 / 2  and with no loss of generality we 
have taken k = 0. With (90), (89) can be recognized as a 
geometric series, which can be summed to yield 

- 1 + 2P sinc (GM) - 
1 + 2P 

where the approximate form holds for +, < < 2P.  
For P > > 1 ,  the conversion efficiency calculated ac- 
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cording to (91) goes as sinc2 ( i P M ) ,  so in order that the 
efficiency remain within 50% of the ideal, we must have 
aM < 0.443 7r, or, with (90), 

q / l ,  < 0.89. (92) 
While (91) predicts an efficiency reduction of 1-10% for 
typical visible-light devices, one can in most cases com- 
pensate for the linearly increasing phase error by a small 
change in the phase mismatch Ak', accomplished through 
a shift in the operating wavelength or temperature. The 
necessary shift in operating point 6A k' to eliminate the 
phase shift, or equivalently the shift necessary to make 

these are more easily measured than are absolute conver- 
sion efficiencies. In this section, we discuss the form of 
the tuning curves for the types of errors analyzed in the 
previous section. Similar calculations for conventionally 
phase-matched crystals are discussed in [43]. We also 
briefly present techniques for synthesizing desired tuning 
curves by appropriate modulation of the domain structure. 
To simplify these analyses of the tuning curves, we as- 
sume throughout that the number of domains is large 
enough that the approximate integral expression for the 
output field, (13), is accurate. 

the design length an integral multiple of the quantization 
increment q,  is A.  Effects of Various Errors on SHG Tuning Curves 

Consider first the random errors described in Section 
111-B. With (13) for the field, we obtain for the normal- -- 6Ak' - -  q 

Ak'  2Pi' ized intensity 
(93) 

dz le (Z)  - *(Z'  )1 f (1W F. Periodic Errors in Boundary Position 
A common type of error in domain distribution is a pe- 

riodic drift in the position of the boundaries, such as might 
be caused by oscillations in the position of the freezing 

domains, according to 
Such errors can be described as a phase modulation of the 

This double integral can be manipulated similarly to the 
double sum in (52), to yield 

boundary during growth of a periodically poled crystal. L L - z  

ds (COS [+(z + S) - +(z)]> ( 6 ) = so dz so 
zj = z j , ~  + U sin (Qzj,0) (94) 

so that the phase error is, according to (7), 
where s = z' - z,  and A+(z, SI = WZ + SI - W). 
According to (65) and (1  I ) ,  

(102) 

(95) 

Analyzing this problem according to (1 3), we find that 

aj = Ak'u sin ( Q Z ~ , ~ ) .  

(cos [AcP(z, s)]) = e - a ~ * ( S ) / 2  cos [ ( A W ) ) ]  the normalized output field is given by 
where, according to (63) and (1 l ) ,  

(A+@)) = 6Ak's (103) 
dz . (96) - iA k'u sin (Qz)  

Assuming for simplicity that Q L/7r is an integer, the RHS and. . . ~ ~  ~ 

of (96) is a standard integral form of the Bessel function 
Jo,  so that we have duty cycle errors 

(104) 
a;s /ml ,  period errors 

aio(s) = 

E 2  = Jo(Ak'v) (97) 
and the normalized efficiency is given by where U ;  = ( a ~ ~ / l , ) ~ .  

For random duty cycle erorrs, the double integral ob- 
tained from (101), (102), and (104) is easily evaluated, 
yielding 

(98) 
Note that this result holds independent of the magnitude 
of Q and L so long as Q L / x  is an integer, and is a good 

ij = J & r U / Z , ) .  

approximation for any value of Q satisfying Q L  > > 1 .  ( i j )  = sinc2 (6Ak'L/2). (105) 
. -  

The tolerance for 50 % normalized conversion efficiency 
is quite strict: 

v / l ,  < 0.358. (99) 

IV. PHASE-MATCHING TUNING CURVES 
In the previous section, the reduction of the peak effi- 

ciency for various nonideal structures was related to the 
magnitude of the errors. While these results are useful for 
establishing tolerances on the fabrication processes, for 
characterization of unknown errors one would prefer to 
have information on the shape of the tuning curves, as 

We see that in this case the width of the tuning curve is 
unaffected, with the ordinary sinc dependence scaled by 
an overall efficiency factor, a result of the nonaccumulat- 
ing nature of the phase errors for this type of random 
function. 

For random period errors, evaluation of the double in- 
tegral obtained from (101), (102), and (104) is rather more 
complicated, ultimately yielding 

( i j )  = 2 D P 2 { F 2  - S 2  + SD + e-' 

[(S2 - F 2 )  cos ( F )  - 2FS sin ( F ) ] }  (106) 
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where 

F = 6Ak’L 

S = Nu:/2 

D = F2 + S2. (107) 

In this case the width of the curve increases with U+, be- 
cause of the accumulation of phase error in a random walk 
fashion. The normalized efficiency as a function of mis- 
match F for several values of S is shown in Fig. 5 ,  where 
the transition from a sinc2 (F/2) dependence for a perfect 
structure to a broadened curve with the periodic features 
washed out is clear. From (106) it can be shown that ( 7 )  
-+ 2S-’(1 - S-I) and that the FWHM 2F,/2 -+ 2S(1 + 
S-I) asymptotically for large S .  These results can be ex- 
plained qualitatively in terms of a model considering the 
output field to be the incoherent sum of the contributions 
of M sections of length Zeff, where M = L/ZeR, and leff = 
Z:/2uf is the length over which the error in the boundary 
position “randomly walks,” a distance Z,/&. This 
choice of Zeff leads to results for the efficiency and the 
phase-matching bandwidth (calculated as 6A kkWHM = 
27r/leff) within 20% of the correct value. 

It should be noted that the tuning curve of a particular 
curve device chosen from an ensemble with a given S does 
not necessarily resemble the ensemble average of the tun- 
ing curves. This observation is true even for large N, be- 
cause the contributions of a relatively small number A4 of 
“coherent sections” add to one another to produce the 
output field. The breadth of the ensemble average of the 
tuning curves is in large part due to the distribution of 
peak detunings (78) rather than the breadth of the individ- 
ual tuning curves. A quantity that would bear a closer re- 
semblance to a typical tuning curve would be the ensem- 
ble average of 6 as a function of the detuning from the 
optimum value of 6 A  k ’ [(77)-(78)]. Numerical simula- 
tions suggest that individual tuning curves deviate signif- 
icantly from even this latter quantity, so we do not repro- 
duce the calculation here. 

We now consider the linearly tapered period error dis- 
cussed in Section 111-D. To include frequency tuning, the 
phase function of (82) is modified according to (7) yield- 
ing 

0 2 s  4 s  6 s  
GAk’L 

Fig. 5 .  Normalized SHG efficiency ( ij ) for QPM devices with random 
period errors versus the detuning from nominal phase-matching, 6Ak’L. 
The curves are parameterized by S = Na:/2, a measure of the randomness 
defined in (107). 

where E was defined in (84) and v is defined as 

The function defined in (109) is essentially the same as 
the result for Fresnel diffraction from a single slit, with 
E playing the role of the Fresnel number and v the trans- 
verse position. 

Tuning curves are plotted according to (109) for several 
values of 4 in Fig. 6.  For cases where FWHM conversion 
peak is broad compared to that of an ideal structure, i.e., 
for E 2  >> 1, the peak efficiency occurs for v = 1 ,  and 
the product of the peak efficiency and the FWHM is ap- 
proximately constant. Note that if the efficiency for the 
optimum v were plotted in Fig. 4 rather than the efficiency 
for v = 0, the overall decrease with 4 would be similar, 
but the strong ripples would be eliminated. 

Finally, we turn to the case of periodic errors in the 
position of the boundaries, as discussed in Section 111-F. 
Phase mismatch is included by modifying (95) according 
to (7) to obtain 

+(z) = A k ’ v  sin (nz) + 6Ak’z .  

Inserting this result into the integrand to (81), applying 
the standard Bessel function expansion of the complex ex- 
ponential, evaluating the integral, and squaring the result, 
we find 

(1  11) 

Inserting this function into (13) for E2, carrying out an 
analysis similar to that leading to (83), and finding the 
square magnitude of the result, we obtain 

+ ( - 1 ) P e  -‘pR sinc (U - p ~ ) ]  

where U = 6 A k ’ L / 2  and R = Q L / 2 .  The normalized ef- 
ficiency as a function of phase mismatch for R = 37r is 
plotted in Fig. 7 for several values of the domain bound- 
ary errors v/Z, = A k ’ v / a .  We see that the effect of the 
phase modulation is to induce sidebands on the phase- 

1 
4 = ? ({C[E(1 + VI1 + a m  - V>l>’ 

+ {S[4(1 + v)] + S[((1 - v)]}~)  (109) 
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Fig. 6.  Normalized SHG conversion efficiency fj for QPM devices with 
linearly tapered domain widths vs the detuning from nominal phase match- 
ing 6Ak'L.  E = - is a measure of the taper, defined in (84). 

matching curve, so that a series of sinc2 functions with 
centers shifted by the modulation frequency are obtained. 
Note that the width of the peaks is dictated only by the 
length of the crystal, and is independent of the phase 
modulation amplitude, consistent with the phase coher- 
ency of the domains over the whole structure. Of course, 
the amplitude of the largest peak decreases with increas- 
ing modulation depth. For R < 1, the separation of the 
sidebands is smaller than the width of the sinc2 curve, so 
the effect of the modulation is to broaden and lower the 
central peak. 

B. Synthesis of Tuning Curves 
It would frequently be useful to be able to exert some 

control over the phase-matching properties of a nonlinear 
optical device, for example to broaden its phase-matching 
bandwidth. We have seen in the previous section how var- 
ious types of errors in the periodicity of a quasi-phase- 
matching structure can lead to alteration and broadening 
of the phase-matching curves. More desirable, however, 
would be the ability to completely specify the shape of 
the tuning curve. Because of the Fourier transform rela- 
tionship between the tuning curve and the longitudinal 
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Fig. 7 .  Normalized SHG conversion efficiency +j for QPM devices with 
periodically varying domain widths versus the detuning from nominal phase 
matching, 6Ak'L.  v i s  the amplitude of the modulation, as defined in (108). 
Spatial frequency of the modulation is 0 = 6?r /L.  

profile of the nonlinear coefficient [( 16)], it would in prin- 
ciple suffice to specify the nonlinear coefficient profile as 
the inverse transform of the desired tuning curve. How- 
ever, a method does not exist for continuously varying the 
magnitude of the nonlinear coefficient in most materials. 
With QPM, one can use a programmed sequence of do- 
main reversals to approximate the desired control. Note 
that the Fourier transform relation between the generated 
field E2(A k)  and the nonlinear coefficient profile g ( z )  lim- 
its the maximally achieved conversion efficiency. In the 
common case where g(z) only takes on the values + 1 and 
- 1, the generated power of the second harmonic inte- 
grated over the phase-mismatch, i.e., the area under the 
phase-matching curve, is independent of g(z). Thus, a 
broadening of the phase-matching width will result in a 
reduced peak efficiency. 

As an approach for constructing a discrete approxima- 
tion to a desired nonlinear coefficient profile, consider a 
"building block" consisting of two consecutive domains 
having the opposite sign of nonlinear coefficient, each of 
magnitude de*, as illustrated in Fig. 8. The total length of 
the block is 6: (ideally chosen to be 2ml,), the length of 
the first domain is 1, and thus the length of the other is 
6: - 1. The increment in the second-harmonic field after 

one such block is found using (4) to be 

11 Wff  [(e -iAk'l  - 1) - (e  -iAk'd: - e - i A k ' l  
E2 = - 

-iAk' 

sin ( A k ' 6 : / 2 ) ] .  (1 13) - e -iAk'd: / 2  

The field generated by this building block is equal to that 
generated in a single phase-matched layer of the same 
thickness with an equivalent nonlinear coefficient dQ. 
Comparing (1 13) with the field generated in such a ho- 
mogeneous layer E2 = r C d Q  we see that 

1 sin (Ak '6 : /2 ) ]  for arbitrary 6:) 

sin ( A k ' l / 2 )  (for 6: = 2m1,). - - 2d,,f e - i A k ' l / 2  

ma 

( 1  14) 

Thus, the magnitude and the phase of the equivalent non- 

- 
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Fig. 8. Schematic of a building block for tuning curve synthesis. Shaded 
area represents a domain reversed in polarity from the rest of the block. 

linear coefficient can be controlled by varying 1 ,  i.e., for 
a block with 1 = l j ,  

[ L d a  = k A k ’ l j / 2  

where the choice of the sign of the phase is given by -sgn 
[sin (A k ‘ l j / 2 ) ] .  Note that the simple form for dQj in ( 1  15) 
is based on the second form of (1 14), and hence is not 
strictly valid when tuning away from A k  = 0, because 
the block length L?, which physically stays the same, de- 
parts from 2m1, through the change in l,. 

A structure which possesses the desired phase-match- 
ing tuning curve can be built up by stacking a series of 
these building blocks, with the magnitudes of their effec- 
tive nonlinear coefficients describing a profile which is a 
discrete approximation to the inverse Fourier transform of 
the desired tuning curve. (That the intensity tuning curve 
is the square of the Fourier transform of the dQj. must of 
course also be taken into account.) We will consider here 
the case in which all of the blocks in the device structure 
are of the same length. Negative values of d, may be 
achieved in either of two ways. The signs of both domains 
in the building block can be reversed, or values of lj which 
make sin ( A k ‘ l j / 2 )  negative can be used if m > 1. Nu- 
merical modeling seems to indicate better tuning behavior 
in structures using the former technique. It also indicates 
that some ranges of 1 are better than others in obtaining 
well-formed tuning curves. Note that increasing m can in- 
crease the minimum necessary domain length, but the tol- 
erance on errors in the positions of the domain boundaries 
remains the same. 

Tuning curves approximating a rectangle function and 
a triangle function generated by approximating the in- 
verse transforms with 128 blocks with m = 3 and with 1 
running from 21, to 31, are shown in Fig. 9(a) and (b), 
respectively. Sign changes necessary in the sinc function 
with three sidelobes on each side of the origin used as the 
inverse transform for Fig. 9(a) were obtained by reversing 
the polarity of the relevant blocks. Heights of the synthe- 
sized tuning curves are normalized in the figure to the peak 
efficiency of an “ideal” QPM structure of the same total 
length L and the same order (m = 3) but with dQj = 
2den/m7r (independent o f j ) .  The abscissa in the figure is 
in units of the half width of the first zero of the same 
“ideal” tuning curve. The shorter effective length of the 

structures leads to a factor of four increase in the width 
of the tuning curve and a proportional reduction in the 
peak conversion, which is the price one must pay to tailor 
the tuning-curve shape. The slight asymmetry and pres- 
ence of small ripples on the curves are effects caused by 
the nonuniform phase of the structures. The severity and 
handedness of these phase effects were found to depend 
on the range of 1 used in synthesizing the profiles. As ex- 
pected, tuning curves having the same shape are calcu- 
lated in real space [(3)] and Fourier space (a fast Fourier 
transform evaluation of (16) on the complex spatially 
varying nonlinear coefficient obtained from (1 14)). 

The complication of nonuniform phase during tuning 
prevents the attainment of truly arbitrary tuning curves. 
Best results are obtained in synthesizing phase-matching 
functions which are symmetrical (even) about A k  = 0. 
Independent control of both magnitude and phase of the 
effective nonlinear coefficient is not possible with the sim- 
ple building block proposed above. It is possible to con- 
struct more complicated building blocks for which the 
phase is the same regardless of the magnitude at a fixed 
A k ’ ,  but since the phase across domains of different 
lengths tunes at different rates, it does not appear to be 
possible to form a truly phase-compensated structure. 
Nevertheless, the class of tuning curves which can be suc- 
cessfully synthesized contain many useful members. 
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The synthesis method outlined above represnts an ex- 
ample of what Nazarathy et al. [38], [44], [45] have called 
an “analog” approach to the design of phase reversal 
structures. Optimization algorithms such as that used by 
Erasme et al. [46] might be used to improve the perfor- 
mance of a structure synthesized with the present tech- 
nique by making adjustments to the positions of domain 
reversals. A “digital” approach may also be taken, in 
which domain lengths are only allowed to take values 
which are multiples of a minimum “chip” length. If the 
objective is to maximize the bandwidth, with conversion 
efficiency being of subsidiary importance, Nazarathy has 
shown that by using suitable digital pseudorandom se- 
quences such as Barker codes, bandwidths approaching 
that of a sample a single chip long can be obtained without 
the conversion efficiency falling to that of a single chip. 

V. SIMULTANEOUS LINEAR AND NONLINEAR 
MODULATION 

In experimental implementations of QPM, modulation 
of the linear optical properties of the medium often oc- 
curs, either as an unintended byproduct of the domain in- 
version process, or intentionally as a means for accom- 
plishing QPM. To analyze such devices, (1) for the 
evolution of the second harmonic field must be modified 
to 

where the phase error +(z) is given by 

y = i2wZl /c2eo,  and ZI is the intensity at the fundamental. 
Consider a structure consisting of N layers, with the n th 
layer extending from z, - I to z,. Assuming the properties 
of the medium are homogeneous within each layer, we 
can integrate (1  16) to obtain 

n 

~ ~ ( z , )  = iy C t j ( e  -‘+I - e- ‘+’ )  (1  18) 
j =  I 

where 

j 

+j = C A+; (1  19) 
i =  I 

and 

(121) 
4 4 .  = ’ nl,jn2.jAkj” 

Evaluating (1 18) at the output of the device (z = z,,,), and 

reindexing the second sum, we find 
N -  I 

&(ZN) = iy C (tJ - tJ+l)e-’+’ + iy(tNe-’+N - 41) 
J = I  

N 

5: iy C (4, - tJ + I )e  -‘+I (122) 

where the approximate form neglects a contribution ap- 
proximately equal to that of a single layer, and should be 
accurate when N is large, similar to (9). 

To make further progress, we must make further as- 
sumption about the nature of the modulation of the me- 
dium. In the simplest case of interest, the medium con- 
sists of two alternating types of layers. We can then write 
the material parameter as 

(123) 

J =  1 

EJ = r + (-l)JAtJ 
where is the mean of 4 and 2A4; is the peak to peak 
modulation. The subscript j is retained on A t J  to allow 
for nonideal structures in which the modulation depth is 
not constant along the length of the device. With (123), 
the approximate form of (122) becomes 

N 

~ ~ ( z , , , )  = i2y C A ~ , ( - I ) J ~ P + J .  (124) 
J =  I 

If we further assume that the device is designed for sym- 
metrical odd order QPM, i.e., that each layer is nominally 
an odd number of coherence lengths long, and define a 
phase error aJ to account for errors in the domain spacing, 
(124) can be written 

N 

&(zN) = i2y C A t J e  (125) 
J =  1 

where 4J = j m r  + aJ, and m is an odd integer. 
If the modulation depth is constant over the length of 

the device, and the domains are all of the nominal length 
ml,, (125) becomes simply 

&(ZN) = i2yA <N.  (126) 

Comparing (126) with the solution to (1  16) for a homo- 
geneous conventionally phase-matched medium, E2(L) = 
ydef iL/nl  n2, we see that the modulated medium generates 
the same output field as would a homogeneous medium 
with a nonlinear susceptibility deqUlv, given by 

N 
dequiv = i2nl n2 A 4 - L 

To understand the implications of this result, consider 
several special cases. For ordinary QPM, the indices of 
refraction are not modulated, but the nonlinear coefficient 
is modulated by fd,,. We then have, with (121) and 
(123), A t  = deK/(n2nlAk’), and N = L/(mZ,), so with 
(127) we obtain dopM = (2/mr)deff, in agreement with 

If the indexes of refraction are modulated, we have 
“grating assisted phase matching” (GAPM) [26], [27], 

(10). 
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1281, [301. Taking the indexes of refraction to be where only first order terms in the modulation and the 
dispersion are retained. With (L30) for N, we obtain from 
(126) and (127) dGAPM = (i2d/ma)[Ad/d - (An2 - 
Anl)/(E2 - El)]. We see that depending on the relative 

(12@ n l  = El + Anl and n2 = E2 f An2, 

A .$ and N are given by 

and 

= 
14L(An;; Anl)  

(An2 - An,)* 
4L(An2 - An,) 

mh 
if In2 - E l (  < IAn2 - AnlI (130) 

where the first approximate form of (129) neglect terms 
of second order in Anl and An2, and the third form of 
(129) neglects terms second order in An or ( E2 - El) .  To 
obtain (130) for N, the difference in the lengths of the 
domains due to the differences in the indexes of refraction 
must be taken into account. The first form of (130) holds 
for the case where the sign of the phase-mismatch Ak' is 
constant throughout the crystal, whereas the second form 
assumes that Ak' changes sign between neighboring do- 
mains. With (129) and (130), we find from (127) that 

where only the form resulting from the lowest order ap- 
proximations with I Ti2 - E21 2 /An2 - Anl I is repro- 
duced here. We see that the effective nonlinearity is 
smaller than that for QPM by the ratio of the dispersion 
modulation to the average dispersion. 

If there is enough modulation in A k' to accomplish An2 
= Anl with E2 = El ,  it follows from (129) and (130) that 
dequi" = 2deff/ma = dQPM. In this special case, known as 
balanced phase matching (BPM) [29], the average phase- 
mismatch vanishes, and it is no longer necessary that the 
domain lengths be multiples of the coherence length. In 
the limit that the domain lengths are small compared to 
the coherence length, dBpM = de,. 

If both linear and nonlinear modulation are present, the 
situation is more complicated. Assume de, is given by de, 
= d f Ad. If de, is modulated loo%, i.e., if d = 0, the 
linear modulation has no first-order effect on the effi- 
ciency. If, on the other hand, the dispersion and both the 
linear and nonlinear modulation are small, we find from 
(121), (123), and (128) that 

phase of the linear and nonlinear modulations, their ef- 
fects can add either constructively or destructively. For 
arbitrary magnitudes of linear and nonlinear modualtion, 
an expression similar to that of (129) can be obtained from 
(121), but the result is not presented here. 

If the modulation is uniform, but phase errors exist, 
(125) takes the form 

N 

E2(zN) = i2yA5 c e-'']. (133) 
j =  1 

Note that the summation in (133) is identical to that in (9) 
for ordinary QPM, so all the conclusions reached in Sec- 
tions I11 and IV regarding the effects of various types of 
phase errors on the conversion efficiency carry over di- 
rectly to GAPM. As an example, consider the effect of 
changing the duty cycle of the domains from the ideal of 
ma for each layer. The structure then consists of alternate 
layers with phase shifts A 4, and 2am - A 4a. Following 
(125), we then see that the phase error @ altemates be- 
tween + = ma - A4a and + = 0. Noting that this type 
of error leaves the number of domains unchanged at the 
value given by (130) for a given length L, we find with 

E2(zN) 5: -2yA tNe-iA@a'2 sin (A4a/2). (134) 

Comparing with the results for the ideal case A+a = 
a m  given in (126), we see that the magnitude of the ef- 
fective nonlinear coefficient is reduced from the ideal by 
a factor sin (A 4a/2), in agreement with (22) for ordinary 
QPM. It can similarly be shown that the results for even 
order GAPM are also analogous to those for conventional 
QPM . 

We have to this point analyzed devices with abrupt 
boundaries between regions of different linear or nonlin- 
ear properties. This description is appropriate for many 
important systems, e.g., thin ferroelectric domain walls 

(133) 
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in LiNb03 or index variations created by highly aniso- 
tropic diffusion in KTiOP04, but may not accurately de- 
scribe other interesting systems where the material prop- 
erties change more slowly with z. For the simplest form 
of such a continuous variation, the material parameters 
are sinusoidal functions of position, and we can write 
(116) as 

(135) 

where the combination of material parameters E is given 
by 

Assuming A k ' ( z )  = L\k' + A d  cos (Kz + + K ) ,  we obtain 
+(z) with (1 17) as 

+(z) = Z z  + ( A E ' / K )  sin ( K .  + +K) 
- ( A d ' / K )  sin (+K). ( 137) 

Using (128), relations similar to (129) or (132) can be 
developed to relate Z and Ak' to the modulation of the 
indexes of refraction and the nonlinear coefficient. The 
result is straightforward, and we do not reproduce the 
general term here. Note that the form assumed for ," in 
(136) contains only the fundamental modulation fre- 
quency, and hence is appropriate only when the ampli- 
tudes of the modulations are sufficiently small that higher 
order terms are not significant. No such restriction applies 
to (137), because +(z)  is a linear function of the index 
modulation. Inserting (136) and (1 37) in (1 35), expand- 
ing the phase-modulated exponential with the standard 
Bessel function series, and integrating the resulting se- 
ries, we obtain 
,v2(,r) = - i y k i ( A f ' / K ) ~ i n ( t x )  

m 

and the second form of (138) follows from the first by 
standard recursion relations. Typically, only one fre- 
quency component will be close enough to phase match- 
ing to contribute significantly to the total field. 

We can define an effective nonlinear coefficient for the 
Mth component of a sinusoidally modulated medium by 
comparing (138) to the result for an ideal homogeneously 
phase-matched crystal. We find 

The effective nonlinear coefficient depends on both mod- 
ulation depths, and their relative phase, as was seen for 
the discrete layer case. We can again best understand this 
result by examining various special cases. Consider the 
M = 0 and M = 1 terms: 

In both these expressions, the second form follows from 
the first under the assumption that 5 << ( A K ' / K ) .  For 
M = 0, the average phase-mismatch vanishes, and we 
have a situation similar to BPM. We see that achieving 
phase-matching through modulation around the mean re- 
duces the effective nonlinear coefficient compared to ideal 
phase-matching in a homogeneous medium by a factor 
J o ( A d ' / K ) .  For the M = 1 term, we see that when the 
dispersion modulation is the dominant effect (i.e. , when 
the approximate form of (141) applies), the e f f e d e  non- 
linear coefficient goes as J l ( A d / K )  = J l ( A d r / A k ' ) ,  and 
thus fo rma l l  modulation depth, is reduced by a factor of 
( A  g' /2  A k' ) compared to homogeneous phase matching. 
Note that this is a factor 4/7r smaller than the GAPM 
result of (131), which corresponds to the difference be- 
tween the amplitude of the fundamental Fourier compo- 
nent of a unit amplitude square wave (2/7r) and a unit 
amplitude sine wave (1  /2). 

If the grating is not sinusoidal, one can of course repeat 
this analysis for the various Fourier components of the 
grating function. The 4/7r factor relating the GAPM re- 
sult to (141) is easily recovered in this fashion. When the 
depth of the phase-modulation is small, the method is 
straightforward. However, when the modulation depth is 
large and the grating function is not sinusoidal, the result 
will contain sums of the sideband amplitudes resulting 
from several of the Fourier components of the grating, 
and algebraically complicated expressions are obtained. 
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VI. SUMMARY 
This paper has examined the theory of quasi-phase- 

matched SHG, and in particular, various departures from 
ideal QPM. The tuning properties of periodic structures 
were investigated, and phase-matching bandwidths due to 
the variations in temperature, wavelength, and propaga- 
tion angle were obtained. The effects of a number of 
structural defects on the QPM conversion efficiency and 
tuning curves were then calculated. These results are of 
use both to estimate tolerances for device fabrication and 
as diagnostic tools for analyzing experimental measure- 
ments. Finally, a method of designing devices with tai- 
lored phase-matching curves was described. 

APPENDIX I 
ANGLE TUNING OF QUASI-PHASE-MATCHED SHG IN 

ANISOTROPIC MEDIA 
The analysis of angle tuning and bandwidths for SHG 

presented in Section 11-C is valid only in isotropic media. 
While simple results are obtained illustrating effects due 
specifically to QPM, the analysis is not directly applica- 
ble to many experimentally important systems, e.g., in- 
teractions between extraordinary waves in periodically 
poled lithium niobate. In this appendix we extend the re- 
sults of Section 11-C to the more complicated case of an- 
isotropic media. 

The point of departure is again (37) and (38) relating 
the x and z components of the fundamental, second har- 
monic, and grating k vectors. For anisotropic media, the 
analysis is complicated by the angle dependence of the 
magnitude of kl and k2, given by 

kl = b / c ) n 1 ( 4  

k2 = (2u/c)n2(v + $) (Al. 1) 

where the variation of the indices of refraction depends 
on the orientation of the principal axes of the dielectric 
tensor and the magnitude of the birefringence. For nota- 
tional simplicity, the symbol nl  or n2 with no argument is 
assumed to be evaluated at the angle given in (Al. 1). With 
(37), (38), and (Al . l ) ,  and Fig. 2, we find that dAk/dv 
is given by 

isotropic media if we set n; = ni = 0. To first order in 
the derivatives of the indices of refraction (and hence to 
first order in the birefringence), (A1.2) can be written as 

1 

11 ni + [~ sec2 (v + $) - - sec2 (v) . (A1.3) 
n2 nl 

Further analysis for arbitrary orientation of the princi- 
pal axes is tedious. In the remainder of this appendix we 
assume that a principal axis of the dielectric tensor lies 
normal to the boundary and in the plane of incidence. We 
may then write the indices of refraction in the form 

nl(v) = nl(0) + BI sin2 (v) 

n2(v + $) = n2(0) + B2 sin2 (v + $) (A1.4) 

where B1 and B2 are the birefringences at the fundamental 
and the second harmonic frequencies, and the form given, 
simpler than the exact result, is correct to first order in 
the birefringence. With (A1.4) in (A1.3), we obtain, to 
first order in B, 

- -  - -2k1 av 

(Al.5) 

Note that for B1 = B2 = 0, (A1.5) agrees with (39) for 
isotropic media. According to (25), calculation of the an- 
gular acceptance bandwidth requires evaluation of the de- 
rivative in (A1.5) at the phase-matched angle v = vPM, 
i.e., at the angle where Ak = 0. From (37) and (38) with 
Ak = 0 we find 

sin (49 - - (K/k2) sin ( K  - v) 
cos (v + $) (nl/n2) cos (v) + (K/k2) cos ( K ) '  

(Al.6) 
With (A1.6) in (A1.5) we find 

1 Ksin ( K  - v) 
cos (v) + (K/2k1) cos ( K )  

1 aAk - -  
av 

n; 1 - -cot (v + $) 
n2 

1 * [ 1 + 2 (: - 2)  - %cos2 (v) 1 + - 4 tan (U + $) 
n2 nl 

+ 4kl (2 - :) sin (v). (A1.7) 

The first term in (A1.7) consists of two factors, the first 
being the same as is obtained for QPM in isotropic media 
and the second a function of the birefringence that ap- 
proaches unity for small birefringence. The second term 

(A1.2) 

4 1 - - cot (v) 

1 + 1 tan (v) 

nl 
n' 
4 

+ tan (v) 

where the prime indicates differentiation with respect to 
argument. (A1.2) can be shown to agree with (39) for 
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is the same as is obtained for conventional angle tuned 
SHG. We see that the contributions of the grating and the 
birefringence to the tuning rate are essentially additive, 
with a change in scale for the QPM term that is small if 
the birefringence is small. As for the isotropic case [(40)], 
the angular acceptance bandwidth can be obtained by in- 
serting (A1.7) into (25), but the result of this simple sub- 
stitution is not reproduced here. 

Note that it is again possible to find a noncritical phase- 
matching angle for which aAk/av = 0. From (A1.7) it 
can be seen that noncritical phase-matching results from 
equal and opposite tuning rates from the birefringence and 
the grating. If the grating vector K is normal to the surface 
( K  = 0), it is clear that noncritical phase-matching can be 
achieved only if v = 0. To obtain the angular capacitance 
in this case, we must, according to (24), obtain the second 
derivative a2Ak/av2. With (A1.7) we find 

which again takes the form of a sum of two terms, one 
that is the same as for QPM in an isotropic medium, and 
one that is the same as for conventional phase matching. 
With (Al .8)  and (25) we find the tolerance for noncritical 
QPM in a birefringent medium, 

(Al .9)  

APPENDIX I1 
OPTIMIZED CONVERSION EFFICIENCY IN NONIDEAL 

STRUCTURES 
In an ideal quasi-phase-matched device, the peak con- 

version efficiency occurs at the nominal design wave- 
length, at which the k-vector mismatch obeys A k '  = 
Ak& If the structure is nonideal, the conversion efficiency 
at the design wavelength is reduced by an amount that 
depends on the nature of the errors, and that can be cal- 
culated according to (13) or (48). In many cases, the 
k-vector mismatch can be offset a constant amount from 
the design point through temperature, angle, or wave- 
length tuning. It is interesting to ask at which value of the 
detuning the conversion efficiency of the nonideal struc- 
ture is maximized. Assume that there are sufficiently many 
domains that the continuous approximation, (13), is valid. 
We may then write the normalized conversion efficiency 
as 

where according to (7) and (11) 
error is given by 

+(z) = +O(Z) + 

the accumulated phase 

6A kz (A2.2) 

where a0(z) is the phase error at the design wavelength, 
6A k is the offset added to maximize the efficiency, and 

IIf(z)ll = ; l;f(z) dz. (A2.3) 

If a0(z) is small, we can expand (A2.1) to second order 
in +&) to obtain 

6 3 1 - [ll+(z)211 - 11+~z)1121. (A2.4) 

with (A2.2) for +(z) ,  (A2.4) becomes 

4 1 - tII+iII - II+oI12 + 26AkII(z - L/2)+oII 

+ (L2/12)6Ak2]. (A2.5) 

Taking the derivative of (A2.5) with respect to 6Ak, and 
setting the result equal to zero, we obtain the optimum 
offset, 

6Akopt = -(12/L2) I~(Z - L/2)+oll. (A2.6) 

Substituting this result into (A2.4), we obtain the opti- 
mized efficiency, 

iopt = 1 - tll+;II - II+O1l2 - (12/L2) 

(A2.7) 

Equations (A2.6) and (A2.7), derived from expansions of 
(A2.1) correct to second order in the phase error, are gen- 
erally applicable for small magnitude errors of arbitrary z 
dependence, and hence are useful for setting fabrication 
tolerances. If results are required for devices with errors 
sufficiently large that the efficiency is badly degraded, one 
can return to (A2.1) and analyze the efficiency for a spe- 
cific type of error without making the series expansion 
used here, but little of a general nature can be said in this 
case. 

APPENDIX I11 
BACKWARD PROPAGATING INTERACTIONS 

If sufficiently short domains can be created, it is pos- 
sible to quasi-phase-match interactions involving coun- 
terpropagating beams. Of special interest is backward 
parametric amplification, [47] which can lead to mirror- 
less parametric oscillation with counterpropagating signal 
and idler beams. Such devices have not been demon- 
strated due to the impractically large birefringence nec- 
essary for conventional phase matching in this configu- 
ration, but appear to be within reach of current QPM 
technology. Detailed discussion of parametric amplifica- 
tion is beyond the scope of this paper, but it is interesting 
to briefly investigate backward propagating SHG to illu- 
minate basic features of such interactions. 

The analysis given in Section 11-C for angle tuning of 
QPM SHG is applicable to backward QPM (BQPM) sim- 
ply by allowing 0 to approach ?r. Equation (32) applies as 
written, and we find that the necessary period for BQPM 
is A = mX/2(n1 + n2). For X = 2 pm and n1 = n2 = 2,  
we find A = m/4 pm, a difficult but not impossible tar- 
get. Note that this is not the condition for QPM a degen- 
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erate backward optical parametric oscillator (BOPO), in 
which the signal and idler counterpropagate, and thus A 
= mX/2n2. The necessary grating period increases by a 
factor of two, becoming A = m / 2  pm for a 2 pm pumped 
BOPO operating at degeneracy. 

For BQPM, certain of the tuning behaviors are quite 
different from those for collinear interactions. For exam- 
ple, the wavelength tuning bandwidth, corresponding to 
(30) becomes 

0.4429h n2 + n,  6 x = -  ~ 

L I x  
Note that the sum, rather than the difference, of the in- 
dices, appears in the tuning rate, yielding a bandwidth of 
0.4 nm in a 1 mm long device for the above example. As 
mentioned above, the angle tuning analysis can be applied 
as given in Section 11-C, but the approximate forms that 
rely on the assumption K << 2kl of course are no longer 
valid. Finally, we note that the temperature acceptance 
bandwidth is also considerably narrowed, with (44) re- 
placed by 

The effect of thermal expansion is particularly large in 
this geometry, increased by a factor (nl + n 2 ) / ( n 1  - n2) 

compared to the collinear case. 
Note Added in Proof: Related work has recently been 

published by S .  Helmfrid and G. Arvidsson, “Influence 
of randomly varying domain lengths and nonuniform ef- 
fective index on second-harmonic generation in quasi- 
phase-matching waveguides,” J. Opt. Soc. Amer. B . ,  vol. 
8, pp. 797-804, 1991. 
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