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All-optical diode in a periodically poled lithium niobate waveguide
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We have demonstrated a guided-wave all-optical diode based on engineered quasiphase Matching in
a LINbO; channel waveguide. For input peak powers beyond 1.5 W atidnf3he device exhibited

a spatially nonreciprocal response, leading to optical isolation with contrasts as high as 90% at
3.1 W, in agreement with theoretical predictions. 2001 American Institute of Physics.
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Recent years have witnessed a renewed interest imented an optical diode exhibiting an isolation figure of
integrated-optics alternatives to standard bulk Faraday rotanerit close to the ideal value of 100% Xt 1.55um.
tors in optical isolators for fiber telecommunication systems.  The QPM profile used for the AOD is sketched in Fig. 1:
However, most thin film devices proposed or demonstratee uniform QPM grating of overall length and periodA is
to date rely on the magneto-optic efféct. perturbed by a localized “defect,” i.e., an isolated domain of

Since a nonreciprocal response can also be expected éxtensionsL # Ay/2, inserted az=L,<L/2. The structure
longitudinally nonuniform structures realized in nonlinear allows cascading of two parametric interactions occurring in
materials’ viable alternatives to the Faraday effect can bethe uniform QPM segments; and L—L;—éL: standard
provided by graded amplifying mediaor quadratic SHG followed byseededSHG! The latter is controlled by
waveguides rendered asymmetric along the propagation dihe defect, which locally changes the phase relationship be-
rection. The latter approach, in particular, can take advantagaveen the fundamentalFF) and second harmoni¢SH)
of quadratic cascading in crystals with a substantial paramewaves by the amount ¢=(2- 5L/Ay—1)r.
ric response, such as periodically poled lithium niofate. ~ For maximum SHG efficiency, the period, equals
Cascading of quadratic nonlinearities, in fact, has providedwice the coherence length of the interaction involving the
novel solutions for all-optical signal switching and process-lowest-order (TNg) guided modes at and at\/2 in az-cut
ing, including the optical counterparts of electronic compo-APE LN channel waveguide. A proper placemeht) and
nents such as transistors and modulatofs. length (6L) of the defect can maximize the forward FF

An all-optical “diode” (AOD) is a spatially nonrecipro- transmission by fully restoring the fundamental power at the
cal device which allows unidirectional propagation of a sig-output via cascaded up-and-down conversions, whereas the
nal, acting as an optical isolator at a given wavelerfythin ~ device acts as an efficient frequency doubler in the backward
the ideal case, its transmission is 100% in the “forward” direction, yielding negligible FF transmission.
direction (Ty=1), while it vanishes for “backward” Due to the intrinsic power dependence in seeded
propagation T, =0), vyielding a unitary contrast SHG, the diode response varies with excitafibirigure 2
C=(Ty —T;)/(Ty +T;). The first demonstration of a non- 1S @ contour plot of the calculated AOD contrast
reciprocal device based on cascading reported by Toevin (Tx —T\)/(Ty +T,) versus the introduced dephasidg
Palacios, Stegeman, and Baldi utilized a linear asymmetry i@nd the excitatior™= 7o Py-L? in the lossless case for
the guided-wave vector profile along a liquid niobgtél) ~ L1=0.2L, wheres,, is the normalized SHG efficiency and
channel for second-harmonic generati®HG).* The weak  Pin the FF input power. The_ contours identify contrasts rang-
linear perturbation, introduced by depositing a thin photoreind from 20% to 99.9%. It is apparent that values in excess
sist layer, resulted in a limited contrast.

A high contrast AOD can be obtained by engineering FORWARD iim)> <===1 BACKWARD
SHG cascadingeffects in forward and backward propagation <
through proper tailoring of theonlinearresponse of a chan-
nel waveguide. This approach can be effectively exploited by
making use of quasiphase matchif@PM) via periodic pol-
ing of ferroelectrics such as LiNbJ

In this letter, we report the demonstration of a truly uni-
directional device based on cascaded nonlinearities. Using a

suitably designed QPM grating in an annealed protongig, 1. sketch of the QPM grating profile used for the all-optical diode
exchanged(APE) LiNbO4 waveguidel,o we have imple- (dark and bright sections represent domains with positive and negative non-
linearity): A dephasing domain of lengtL is insertedatx=L,) inside an

otherwise perfectly uniform grating of periotl, of overall lengthL. The

dpresent address: Laboratoire de Physique de la’Maf®ndense, Uni- arrows indicate nominal forward and backward propagation directions, re-
versitede Nice-Sophia Antipolis-France; electronic mail: gallo@unice.fr spectively.
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FIG. 4. Measured forwardT(} :*) and backward T, :O) transmissions
FIG. 2. Contour plot of the AOD figure of meriff{ —T,)/(T, +T,) vs (normalized to their value foP,y— 0) vs input powerP,y , along with the
I'%= por Pin- L2 (7700; beiNg the normalized SHG efficiency, afg the theoretical predictiongsolid lineg for a waveguide with6L=8.1um,
input powey and Ap=(2-6L/Ay—1)-m for L;=0.2-L, in the lossless |,=8 mm, 5,,=23.6% W 'cm 2 and losses of 0.68 and 0.8 dB/cm at
case. The labels identify the contrast values on the contours. 1.55 and 0.775um, respectively.

of 95% can be expected in a wide interval&$ for inputs  (FBG) to filter out all spurious spectral components around
beyondI'?=10. 1.55 um.

After identifying the most suitable QPM profiles for For each input peak powét, , we recorded the gener-
implementing an AOD, they were realized by electric fieldated SH and the transmitted FF in forward &afier rotating
poling on 500xm-thick z-cut LN substrates. The QPM grat- the sample by 180°backward propagation. For each input
ings had an overall lengthb=4cm and a period pulse, we extracted the corresponding output peak value, in
Ap=14.7um. Channel waveguides included 1-mm-long order to directly compare the experimental results with the
mode filters and 1.5-mm-long mode tapers on each end, armghlculated stationary response of the device.
were fabricated on the poled substrates by proton exchange Figure 4 showgsymbolg the experimental results for an
in benzoic acid through 12m-wide mask openings to a AOD with a dephasing domain of lengthL=8.1um,
depth of 0.71um, followed by annealing at 327.5 °C for 26 placed atL;=8 mm in a waveguide with normalized effi-
h.2 ciency 7,,=23.6% W tcm 2 and losses of 0.68 and 0.8

First the normalized SHG efficiencies dB/cm at FF and SH, respectively. The data refer to trans-
7ol oW1 cm™?) and propagation losses(dB cm ) were  mission at 1.55«m, normalized to the corresponding value
assessed through a low-power continuous-wawe mea- for small P,y both in forward (T; : “*”) and backward
surement. The high-power response was then tested with tH&, : “ O” ) propagation.
experimental setup sketched in Fig. 3. The 185 quasi-cw The measured AOD response is in good agreement with
source consisted of a tunable external cavity diode lasethe numerical predictiongolid lines in Fig. 4. As expected,
(ECDL), followed by an electro-optic amplitude modulator beyond a threshold inputP(y~1.6 W), forward and back-
(EO-AM) and two cascaded erbium doped fiber amplifiersward transmissions depart from each other: the defect-
(EDFAS9), yielding a train of 20 ns flattop pulses at 1 kHz induced seededSHG makes the forward transmission in-
repetition rate, with peak powers of several Watts. Beforecrease again, whereas the backward FF decreases
being coupled into the LiNbOwaveguide, the signal passed monotonically for increasing excitations. FBjy=3.1W, a
through a narrow-bandwidtk0.1 nmy fiber Bragg grating record contrast Ty — T, )/(T, +T,)=90% was obtained.
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7 of the AOD response at high powers.
The inset shows the actual pulse
shape at the input of the device.
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