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We present a theory of ultrashort-pulse second-harmonic generation (SHG) in materials with longitudinally
nonuniform quasi-phase-matching (QPM) gratings. We derive an expression for the output second-harmonic
field generated in an arbitrary QPM grating from an arbitrary fundamental field, valid for arbitrary material
dispersion in the undepleted-pump approximation. In the case when group-velocity dispersion can be ne-
glected, a simple transfer-function relationship describes the SHG process. This SHG transfer function de-
pends only on material properties and on the QPM grating design. We use this SHG transfer function to show
that nonuniform QPM gratings can be designed to generate nearly arbitrarily shaped second-harmonic output
pulses. We analyze in detail a technologically important example of pulse shaping: the generation of com-
pressed second-harmonic pulses from linearly chirped fundamental input pulses. The efficiency of these in-
teractions as well as the limits imposed by higher-order material dispersion are discussed. © 2000 Optical
Society of America [S0740-3224(00)00401-X]
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1. INTRODUCTION
Ultrashort-pulse lasers are very useful light sources for
diverse applications, such as precision machining, multi-
photon microscopy, ophthamological surgery, time-
division-multiplexed communications, and time-domain
spectroscopy. Nonlinear optical frequency conversion
can be used to extend the useful wavelength range of
available laser sources, in particular, ultrafast lasers.
However, in many cases, inadequate properties of conven-
tional nonlinear materials have prevented the application
of frequency conversion to low-power sources. Recent ad-
vances in nonlinear materials, particularly that of the
quasi-phase-matching (QPM) technique, have enabled the
generation of an increasing range of wavelengths with im-
proved efficiencies and with lower-power pump lasers.1

There has been substantial work on the theory of
ultrashort-pulse nonlinear frequency conversion. Early
experimental2 and theoretical work3,4 identified and
quantified the group-velocity effects in second-harmonic
generation (SHG) of ultrashort pulses. Akhmanov and
co-workers wrote several reviews of the work in the
field.5–7 More recent work by Weiner8,9 and by Sidick
and co-workers10–13 introduced the filter-function ap-
proach for description of ultrafast SHG in uniform
crystals8,9,11,12,14 and in uniform QPM gratings13,14 as
well as considered effects of higher-order dispersion.11,14

For nonlinear frequency conversion to be efficient, it is
necessary that the phase velocities of the interacting
waves be matched.15 Conventional nonlinear materials
rely on natural birefringence to attain this phase-velocity
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matching, limiting the choices of materials and polariza-
tions that can be used for frequency conversion. A non-
zero phase mismatch limits the interaction length to the
distance, called the coherence length, over which the in-
teracting waves acquire a p relative phase shift. With
QPM15,16 frequency conversion, the phase mismatch be-
tween the nonlinear polarization (generated by the input
field/s) and the generated field is reset every coherence
length by use of a spatial modulation of the nonlinear co-
efficient. The modulation period, L0 , is then chosen to
be twice the coherence length. In terms of the k vectors
of the interacting waves, the k vector of the periodic grat-
ing, K 5 2p/L0 , must be equal to the k-vector mismatch
of the interacting waves.

QPM allows for interactions between any combination
of wavelengths within the transparency range of a mate-
rial, allows use of nonbirefringent materials, and elimi-
nates constraints on polarization, thereby enabling use of
the large nonlinear coefficients available for interactions
between parallel electric fields. QPM also provides extra
degrees of freedom in engineering nonlinear interactions,
which are not available with conventional birefringent
phase matching. Although uniform periodic modulation
of the nonlinearity is typically used for QPM, nonuniform
modulation can also be desirable for tailoring the fre-
quency response of a nonlinear device.

QPM interactions with longitudinally nonuniform grat-
ings have been studied both theoretically and
experimentally.17–23 However, most treatments to date
have considered the case of tunable cw SHG, rather than
2000 Optical Society of America
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ultrashort-pulse SHG. In previous work the phase re-
sponse of nonuniform QPM gratings, critical to
ultrashort-pulse interactions, was typically ignored. En-
gineering of the phase response was considered by Arbore
et al.,24 who proposed compression of ultrashort pulses
during SHG in chirped QPM gratings that relied on the
combination of spatial localization of conversion and
group-velocity mismatch between the first-harmonic (FH)
and the second-harmonic (SH) pulses. In that work the
QPM-SHG process was analyzed assuming the unde-
pleted pump approximation and negligible group-velocity
dispersion (GVD) at both the FH and the SH wave-
lengths. It was shown that under these assumptions
QPM-SHG can be described with a transfer-function for-
malism, relating the SH spectrum to the spectrum of the
square of the FH pulse. This QPM-SHG transfer func-
tion depends only on intrinsic material properties and on
the QPM grating design. Less-general forms of this
transfer function were derived previously for particular
cases of uniform crystals4,8,11 and uniform QPM
gratings.13,14

An experimental demonstration of pulse compression
during SHG in chirped-period-poled lithium niobate was
presented in Ref. 25. The effects of GVD, which were not
included in the available theory, were proposed as the ori-
gin of small discrepancies between theoretical expecta-
tions and experimental observations, which was shown to
be the case in Ref. 26. The use of chirped QPM gratings
in practical laser systems has also been
demonstrated.27–30 Engineerable shaping of complex
pulses during SHG with Fourier synthetic QPM gratings
was proposed and demonstrated in Ref. 31.

In this paper we develop the theory of ultrafast SHG
with longitudinally nonuniform QPM gratings in the un-
depleted pump approximation and extend the theoretical
framework of Ref. 24 to include material dispersion be-
yond GVM. This paper is organized as follows. Section
2 presents an intuitive time-domain picture of ultrashort-
pulse SHG as well as pulse compression and shaping with
nonuniform QPM gratings by emphasizing the impor-
tance of the GVM effect (intrinsic material property) and
spatial localization of conversion (engineerable property
of a QPM grating). Section 3 presents a rigorous treat-
ment of the ultrashort-pulse SHG process. A frequency-
domain analysis is used because it allows convenient in-
clusion of arbitrary material dispersion properties. We
derive a general result that is not a transfer function in
nature but applies in the case of arbitrary material dis-
persion and pulse length. Neglecting GVD at both FH
and SH frequencies, in Section 4 we rederive the simple
transfer-function relationship of Ref. 24. Inclusion of
GVD and higher-order dispersion terms at the SH fre-
quency still produces a transfer-function result and hence
can easily be accounted for. GVD at the FH leads to a
result that cannot be expressed in terms of a transfer
function; however, for a given FH pulse shape, GVD still
can be accounted for in a straightforward manner. De-
tailed analytic treatment of GVD at both FH and SH fre-
quencies will be described in a subsequent paper.

The remainder of the paper uses this transfer-function
formalism. In Section 5 we consider the SHG process
(both cw and pulsed) with uniform QPM gratings and re-
derive the well-known effects of GVM on the SH pulse
length (Refs. 3, 4, 8, and 9). In Section 6 we show the
utility of nonuniform QPM gratings for pulse shaping and
give the explicit prescription for the grating design that
will perform the necessary shaping function. A particu-
lar technologically important example of pulse shaping,
pulse compression with linearly chirped QPM gratings, is
analyzed in detail in Section 7. Scaling laws for the con-
version efficiency of plane-wave and focused beams (Sec-
tions 8 and 9, respectively) are derived for uniform grat-
ings as well as for a general QPM-SHG pulse shaper and
in particular for a chirped-grating compressor. Section
10 is a comparison of several QPM materials in terms of
their performance in ultrafast SHG devices. Finally, we
summarize the results of this paper.

2. TIME-DOMAIN DESCRIPTION OF
ULTRASHORT-PULSE SECOND-HARMONIC
GENERATION, PULSE COMPRESSION,
AND PULSE SHAPING
The envelope of an optical pulse propagates through a
medium at a characteristic group velocity. In general,
because of the material dispersion, the group velocity of
the SH pulse envelope, u2 , is not the same as the group
velocity of the FH pulse envelope, u1 . This group-
velocity mismatch (GVM) leads to the group-velocity
walk-off effect. When a transform-limited FH pulse
propagates through the nonlinear medium, at each spa-
tial position it generates a contribution to the SH field.
Because of the GVM, the SH fields generated at different
positions in the nonlinear medium undergo different time
delays relative to the FH pulse as observed at the output
of the material. The characteristic length over which FH
and SH pulses walk off each other is called the group-
velocity walk-off length, Lgv 5 t1 /udnu, where t1 is the
FH pulse length and dn 5 1/u1 2 1/u2 is the GVM pa-
rameter. When the length of the nonlinear crystal ex-
ceeds Lgv , a distorted SH pulse with a length longer than
t1 typically results. Because GVM is a result of linear
dispersive properties of the material, QPM, which modu-
lates the nonlinear coefficient, does not qualitatively alter
the situation described above.

Pulse shaping and pulse compression with nonuniform
QPM gratings can be explained as a result of the inter-
play of two phenomena: GVM between the FH and SH
pulses, intrinsic to the nonlinear material, and spatial lo-
calization of SH conversion of particular frequency com-
ponents, an engineerable property of QPM gratings. As
discussed above, GVM maps the position of the QPM grat-
ing to time delay between FH and SH pulses. The local
grating period determines which wavelength can be
doubled. Therefore in a nonuniform grating, different
spatial regions of the nonlinear material quasi-phase-
match doubling of different frequency components of the
FH pulse. In other words, nonuniform QPM maps posi-
tion in the grating onto the frequency components of a
pulse. Together, these phenomena map frequency to
time delay.

Let us consider in more detail how a chirped QPM grat-
ing can impose an additional effective GVD on the SH
pulse. Figure 1 shows the evolution of two different spec-
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tral components of the FH pulse, v8 and v9, and the SH
pulse, 2v8 and 2v9, in a chirped QPM grating. In the
absence of material GVD, both frequency components of
the FH pulse travel through the crystal with the same
group velocity u1 to the position in the crystal where the
local QPM period is appropriate for conversion of the FH
pulse component at v8 into the corresponding SH fre-
quency component 2v8. This SH component then freely
travels to the end of the crystal with group velocity u2
Þ u1 . The other FH component, v9, gets converted to
SH component 2v9 further in the crystal, and then this
SH component travels with group velocity u2 . Because
of the GVM the 2v8 and 2v9 components of the generated
SH pulse acquire a particular time delay relative to each
other and to the FH pulse. Strictly speaking, this is an
oversimplified picture because the conversion is driven by
the square of the FH pulse, and hence we have to consider
propagation of the frequency components of the square of
the FH pulse. This distinction becomes important in the
case when material GVD is nonnegligible, as will be
shown by the frequency-domain analysis, quantified in
Eq. (24), and addressed in detail in a subsequent paper.

We now consider pulse compression with a chirped
grating. Let FH be a chirped pulse, i.e., a pulse whose
spectral components are delayed with respect to each
other. By appropriate choice of the locations in the grat-
ing where each component of the FH generates the corre-
sponding SH component, the relative delay of the SH
pulse components owing to the grating chirp can be made
equal and opposite to that from the chirp of the FH pulse.
The net relative delay will then be zero; i.e., the SH will
be compressed.

It is clear from this time-domain argument that the
chirped QPM grating must be at least as long as the tem-
poral walk-off length. This minimum material length
arises from the need for the SH pulse to walk through the
entire FH pulse, picking up frequency components along
its way. We note that although the conversion process

Fig. 1. Time-domain picture of SHG with a chirped QPM grat-
ing. Two different spectral components of the FH pulse, v8
(dashed curve) and v9 (solid curve) propagate through the crystal
with the same group velocity u1 . At a certain position in the
grating determined by the local QPM period the FH component
v8 generates the SH component 2v8 (dashed curve), which then
freely travels to the end of the crystal with group velocity u2
Þ u1 . The other FH component, v9, gets converted to SH com-
ponent 2v9 (solid curve) further in the crystal, and then this SH
component travels with group velocity u2 . Because u2 Þ u1 ,
the 2v8 and 2v9 components acquire a particular time delay
relative to each other and to the FH pulse.
for a particular frequency component happens over some
finite length, not at a localized point, this time-domain
picture is still very useful for understanding the physics
of the process. A more quantitative and rigorous
frequency-domain analysis of these pulse compression
and shaping phenomena is presented in the following
sections.

3. FREQUENCY-DOMAIN TREATMENT OF
ULTRAFAST SECOND-HARMONIC
GENERATION
We begin the analysis with Maxwell’s equations ex-
pressed in the frequency domain. We use the following
notation: if F(t) is a function of time, then F̂(v) is its
temporal Fourier transform, where v represents optical
radian frequencies. We use the transform pair

F~t ! [ E
2`

1`

F̂~v!exp~ivt !dv, (1)

F̂~v! [
1

2p
E

2`

1`

F~t !exp~2ivt !dt, (2)

and Maxwell’s equations are thus written in the form

¹ 3 Ê~r, v! 5 2ivB̂~r, v!, (3)

¹ 3 Ĥ~r, v! 5 ivD̂~r, v!, (4)

where Ê(r, v), B̂(r, v), Ĥ(r, v), and D̂(r, v) are the Fou-
rier transforms of the full electric-field, magnetic-field,
magnetic-displacement, and electric-displacement vec-
tors, respectively. For nonmagnetic and nonlinear di-
electrics we use the constitutive relations B̂(r, v)
5 m0Ĥ(r, v) and D̂(r, v) 5 e0e(v)Ê(r, v) 1 P̂NL(r, v),
where P̂NL(r, v) is the electric nonlinear polarization
component at frequency v, e(v) 5 n2(v) is the dielectric
constant, and n is the refractive index. We assume loss-
less, isotropic, nongyrotropic media so that D(r, t) is par-
allel to E(r, t), and e is a real scalar quantity.

For the case of SHG, assuming that the FH and the SH
spectra do not overlap, we decompose the full electric field
into a sum of components at the FH, Ê1 , and the SH, Ê2 ,
frequencies, Ê(r, v) 5 Ê1(r, v) 1 Ê2(r, v). Assuming
plane-wave interactions with an undepleted pump and
propagation direction z, from Eqs. (3) and (4) we obtain
the following pair of coupled one-dimensional frequency-
domain scalar wave equations:

]2

]z2 Ê1~z, v! 1 k2~v!Ê1~z, v! 5 0, (5)

]2

]z2 Ê2~z, v! 1 k2~v!Ê2~z, v! 5 2m0v2P̂NL~z, v!, (6)

where the k vector in the medium is k2(v) 5 v2e(v)/c2.
In a medium that is negligibly dispersive in x (2) the

nonlinear polarization spectrum, P̂NL(z, v), which drives
the SH conversion, can be written in terms of the FH elec-
tric field in the form32
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P̂NL~z, v! 5
1

2
e0x~2 !~z !E

2`

1`

Ê1~z, v8!Ê1~z, v 2 v8!dv8,

(7)

where x (2)(z) is the material nonlinear susceptibility, al-
lowed here to vary with position. We now define a
position-dependent (modulated) nonlinear coefficient,
d(z), such that x (2)(z) [ 2d(z). We note that with d(z)
defined in this way, Eq. (7) corresponds to the simple
time-domain relation PNL(z, t) 5 e0d(z)E1

2(z, t).
Optical signals most generally described by a time- and

position-dependent electric field, E(z, t), are usually rep-
resented by an envelope function. The typical envelope
definition used in the nonlinear optics literature (see, for
example, Ref. 33) for pulsed optical fields is defined in the
time domain, with the optical carrier frequency v i and k
vector ki [ k(v i) explicitly factored out (here and in the
rest of the paper the subscript i 5 1 denotes the FH and
i 5 2 denotes the SH). This time-domain envelope,
Bi(z, t), is related to the electric field by

Ei~z, t ! 5 Bi~z, t !exp~iv it 2 ikiz !. (8)

The temporal Fourier transform of the electric field,
Êi(z, v), is then related to the Fourier transform of this
time-domain envelope, B̂i(z, V i), as

Êi~z, v! 5 B̂i~z, V i!exp~2ikiz !, (9)

where we introduced the frequency detunings V2 5 v
2 v2 [ V and V1 5 v 2 v1 .

Though intuitive, this time-domain envelope leads to
an unnecessarily complex analysis for the important case
of SHG in materials with nonnegligible GVD and higher-
order dispersion. Rather, for the derivation presented in
this paper, we define a frequency-domain spatial enve-
lope, Âi(z, V i), such that the Fourier transform of the
electric field can be written in the form

Êi~z, v! 5 Âi~z, V i!exp@2ik~v i 1 V i!z#. (10)

This definition leads to a mathematically and physically
transparent analysis because it explicitly describes the ef-
fect of material dispersion on each frequency component
of the interacting waves, as we will see more clearly later
in the paper. Comparing Eqs. (9) and (10), we obtain the
relation between the two envelopes:

B̂i~z, V i! 5 Âi~z, V i!exp$2i@k~v i 1 V i! 2 ki#z%. (11)

We note that at z 5 0, as well as for V i 5 0, the
frequency-domain envelope and the Fourier transform of
the time-domain envelope are equal to each other; i.e.,

Âi~0, V i! 5 B̂i~0, V i!, (12)

Âi~z, 0 ! 5 B̂i~z, 0 !. (13)

This envelope definition, Eq. (10), reduces to that of Ref. 8
in the limit of negligible GVD and higher-order disper-
sion.

Substituting the frequency-domain envelope definition,
Eq. (10), into the coupled wave equations, Eqs. (5) and (6),
and using the slowly varying envelope approximation,
i.e., assuming that d2Âi /dz2 ! k(v)(dÂi /dz), we obtain
]

]z
Â1~z, V1! 5 0, (14)

]

]z
Â2~z, V! 5 2i

m0v2
2

2k2
P̂NL~z, V!exp@ik~v2 1 V!z#,

(15)

with the nonlinear polarization expressed with Eqs. (7)
and (10) in terms of the FH envelope as

P̂NL~z, V!

5 e0d~z !E
2`

1`

Â1~z, V8!Â1~z, V 2 V8!

3 exp$2i@k~v1 1 V8! 1 k~v1 1 V 2 V8!#z%dV8,

(16)

where V8 [ v8 2 v1 .
Equation (14) describes free propagation of the FH

wave through a dispersive medium; its solution is

Â1~z, V! 5 Â1~V!, (17)

where Â1(V) [ Â1(z 5 0, V) is the FH envelope at the
input (z 5 0) of the nonlinear crystal of length L. We
note that because the effects of dispersion are explicitly
retained in the definition of the frequency-domain enve-
lope, Eq. (10), Â1 is independent of position within the
crystal, even though the FH experiences dispersion, as we
can see by writing the FH electric field, Eq. (10), with Eq.
(17):

Ê1~z, v! 5 Â1~V!exp@2ik~v1 1 V!z#. (18)

Substituting the solution for the FH envelope, Eq. (17),
into the expression for P̂NL(z, V), Eq. (16), we obtain the
output SH envelope by integrating Eq. (15):

Â2~L, V! 5 E
2`

1`

Â1~V8!Â1~V 2 V8!d̂@Dk~V,V8!#dV8,

(19)

where we defined the k-vector mismatch as

Dk~V, V8! 5 k~v1 1 V8! 1 k~v1 1 V 2 V8!

2 k~v2 1 V!, (20)

and d̂@Dk(V, V8)# is proportional to the spatial Fourier
transform of d(z), with Dk(V, V8) serving as the trans-
form variable:

d̂~Dk ! 5 2igE
2`

1`

d~z !exp~2iDkz !dz, (21)

where g [ 2p/(l1n2), l1 is the free-space FH wave-
length, and n2 is the refractive index at the SH frequency.
In writing Eqs. (19)–(21) we assumed no SH field input to
the crystal and we increased the integration bounds in
Eq. (21) from @0, L# to (2`, 1`), recognizing that this can-
not affect the solution because d(z) 5 0 outside of the
crystal.

With Eqs. (19)–(21) one can find the output SH enve-
lope Â2 given the input FH envelope Â1 , the dispersive
properties of the medium, represented by the functional
dependence Dk 5 Dk(V, V8), and the modulated nonlin-
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ear coefficient d(z). We note that Eqs. (19)–(21) are
valid for materials with arbitrary dispersion or, equiva-
lently, for the FH and the SH pulses with arbitrarily
broad nonoverlapping spectra. Assuming that the fre-
quency detunings are small compared with the carrier
frequencies, i.e., V,V8 ! v1 ,v2 , we perform a Taylor ex-
pansion of Eq. (20), resulting in

Dk~V, V8! 5 Dk8~V! 1 Dk9~V, V8!, (22)

with

Dk8~V! 5 Dk0 1 dnV 1
1

2
dbV2 1 dk8~V!, (23)

Dk9~V, V8! 5 b1~V82 2 VV8! 1 dk9~V, V8!, (24)

where Dk0 5 2k1 2 k2 is the carrier k-vector mismatch,
dn 5 1/u1 2 1/u2 is the GVM parameter with ui
[ @dk(v)/dv#21uv5vi

being the group velocities, and db
5 b1 2 b2 is the GVD mismatch parameter with b i
[ @d2k(v)/dv2#uv5vi

being the GVD parameters. The
remainder terms dk8(V) and dk9(V, V8) are of the order
of V3 and V83. Note that in the ultrafast literature it is
common to use b2 for the GVD coefficient of the dispersive
material at a particular wavelength. Here, however, for
notational simplicity we use b i for the GVD coefficient
with the subscript referring to either the FH or the SH.

4. TRANSFER-FUNCTION
INTERPRETATION OF SECOND-HARMONIC
GENERATION
For the rest of the paper we will assume that GVD and
higher-order dispersion terms at the FH and SH wave-
lengths can be ignored. The length of a transform-
limited pulse, tb , for which GVD becomes important in a
crystal of length L, is defined by tb

2 5 Lubu. The results
presented in the rest of this paper are valid for pulses
longer than this limit set by the GVD. Inclusion of GVD
leads to a more complicated analysis as briefly discussed
in the conclusion; this inclusion of GVD will be the subject
of a subsequent paper, for which the set of Eqs. (19) and
(21)–(24) will be a starting point of the analysis.

Explicitly, if the GVD parameters b1 5 b2 5 0 and
the remainder terms dk8(V) 5 dk9(V, V8) 5 0, then
Dk8(V) 5 Dk0 1 dnV in Eq. (23) and Dk9(V, V8) 5 0 in
Eq. (24), and hence d̂@Dk(V, V8)#, as defined by Eq. (21),
becomes V8 independent. We define a new notation for
this special case, D̂(V) [ d̂(Dk0 1 dnV), or, with Eq.
(21),

D̂~V! 5 2igE
2`

1`

d~z !exp@2i~Dk0 1 dnV!z#dz. (25)

Because D̂(V) is independent of V8, it can be factored out
from under the integral in Eq. (19), resulting in

Â2~L, V! 5 D̂~V!A1
2̂~V!, (26)

where A1
2̂(V) is a self-convolution of Â1(V):

A1
2̂~V! 5 E

2`

1`

Â1~V8!Â1~V 2 V8!dV8. (27)
According to the convolution theorem, A1
2̂(V) defined by

Eq. (27) is the Fourier transform of the square of A1(t).
Taking the inverse Fourier transform of Eq. (26) we ob-
tain the time-domain relation:

A2~L, t ! 5 2ig@d~t/dn!exp~2iDk0t/dn!# ^ A1
2~t !, (28)

where ^ denotes convolution.
Equations (26) and (27) can be rewritten in terms of the

conventional time-domain envelopes with Eqs. (11) and
(12), resulting in

B̂2~L, V! 5 D̂~V!B1
2̂~V!exp~2iVL/u2!, (29)

with B1
2̂(V) defined as

B1
2̂~V! 5 E

2`

1`

B̂1~z 5 0, V8!B̂1~z 5 0, V 2 V8!dV8.

(30)

The extra phase factor in Eq. (29) as compared with Eq.
(26) is linear in V and hence represents a simple shift in
time, resulting from different definitions for the time- and
frequency-domain envelopes.

In Eq. (26) the factor D̂(V) is a transfer function that
relates the spectrum of the SH envelope to the spectrum
of the square of the FH. D̂(V) is a generalized version of
a transfer function derived previously for uniform QPM
gratings.13,14 D̂(V) depends only on the dispersive prop-
erties of the medium and the modulated nonlinear coeffi-
cient distribution, but not on any of the input pulse pa-
rameters, and hence can be viewed as a filter function
acting on the different spectral components of the FH
pulse. This transfer function result is the basis for gen-
eral pulse shaping and, in particular, pulse compression
with QPM gratings. The time-domain picture of pulse
shaping, outlined in Section 2, can be derived from these
frequency-domain equations. In the time domain, pulse
shaping with QPM gratings relies on the combination of
the group-velocity walk-off effect and the spatial localiza-
tion of the SHG process. Equation (25) states that for ev-
ery frequency V, D̂(V) is obtained by summing contribu-
tions from different sections of the QPM grating. Each
contribution is offset by a phase that is linear in V. In
the time domain this phase corresponds to a delay, whose
value is determined by the longitudinal coordinate z and
the GVM parameter dn, as indicated in Eq. (28).

5. UNIFORM QUASI-PHASE-MATCHING
GRATINGS
In practice QPM gratings generally use binary modula-
tion of the nonlinear coefficient, i.e., mathematically d(z)
is a square wave whose amplitude is the intrinsic nonlin-
ear coefficient of the material, deff . The particular case
of a uniform grating was analyzed previously13,14; in this
section we rederive those results using the transfer-
function formalism. For a uniform grating of constant
period L0 , d(z) can be decomposed into the spatial Fou-
rier components dm(z) with k vectors Km 5 2pm/L0 ,

d~z ! 5 (
m

dm~z ! 5 (
m

udmuexp~iKmz !, (31)
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where udmu is the amplitude of the mth Fourier compo-
nent of the grating, which is evaluated for a uniform
square grating as16

udmu 5
2

pm
deff sin~pmG !, (32)

where G is the duty cycle of the grating. If G 5 0, i.e.,
the material is unmodulated, then udmu 5 0, which indi-
cates that there is no modulated component of the QPM
grating. The maximum value of udmu is (2/pm)deff ,
which is achieved at G 5 0.5 for an odd-order or at G
5 1/(2m) for an even-order QPM process, respectively.

Substituting Eq. (31) into Eq. (25), we find that only the
Fourier component whose k vector is close to Dk0 , Km

' Dk0 , contributes significantly to D̂(V), resulting in
the following well-known expression for the uniform-
grating transfer function13,14:

D̂~V! 5 gLudmusinc@~Dk0 2 Km 1 Vdn!L/2#, (33)

where sinc(x) [ sin(x)/x and we neglect a linear-in-V
phase factor, which corresponds in the time domain to a
simple time delay. The width of this transfer function,
DVg , is determined by the GVM parameter dn and scales
inversely with the crystal length L: DVg } 1/(dnL).

Let us first consider the case of cw SHG with uniform
QPM grating, i.e., the input FH field is a monochromatic
wave with frequency v1 1 V1 , where V1 is the detuning
from the nominal (in the sense of the envelope carrier) FH
optical frequency, v1 . Thus

E1~z 5 0, t ! 5 E1 exp@i~v1 1 V1!t#. (34)

The envelope self-convolution, Eq. (27), can be written as

A1
2̂~V! 5 E1

2d ~V 2 2V1!. (35)

Substituting Eq. (35) into Eq. (26) and using the result of
Eq. (33), we obtain the output SH envelope as

Â2~L, V2 5 2V1!

5 E1
2gLudmusinc@~Dk0 2 Km 1 V2dn!L/2#. (36)

The SH field described by the envelope of Eq. (36) is a
monochromatic wave at frequency v2 1 V2 5 2(v1
1 V1). The result of Eq. (36) gives the familiar sinc2

tuning curve when its square magnitude is evaluated.
From Eq. (36) we obtain the well-known quasi-phase-

matching condition for the SHG process15,16; i.e., the k
vector of the grating should be equal to the k-vector mis-
match of the interacting waves, or Km 5 Dk0 . We note
that this result is also valid for uniform unmodulated
(non-QPM) materials, where Km 5 0 and hence the
phase-matching condition is Dk0 5 0.

We now consider the case of SHG pumped by a Gauss-
ian FH pulse with optical carrier frequency v1 , 1/e power
half-width t0 and real (temporal peak) amplitude E0 .
The time-domain envelope of the electric field that corre-
sponds to this pulse is

B1~0, t ! 5 E0 expS 2
t2

2t0
2D . (37)

Using the frequency-domain envelope definition, Eq. (10),
we obtain Â1(V) for this pulse as
Â1~V! 5
1

A2p
E0t0 expS 2

1

2
t0

2V2D . (38)

The SH envelope is then obtained from Eq. (26), with the
transfer function given by Eq. (33):

Â2~V! 5
g

2Ap
E0

2Ludmut0 expS 2
1

4
t0

2V2D sinc~VdnL/2!,

(39)

where we assumed that the interaction is quasi phase
matched, i.e., Km 5 Dk0 .

The shape of the SH pulse depends on the ratio of the

bandwidth of A1
2̂(V), DV, and the acceptance bandwidth

of the uniform grating, the width DVg of D̂(V) given by
Eq. (33), as can be seen from Eq. (39). Figure 2 shows

A1
2̂(V) and D̂(V) for two representative cases of different

ratios of these bandwidths. In the time domain, this
bandwidth consideration can be restated: the shape of
the SH pulse depends on the ratio of the crystal length L
to the group-velocity walk-off length Lgv , defined as

Lgv 5
t0

udnu
. (40)

The temporal shape of the SH pulse can be obtained by
the inverse Fourier transform of Eq. (39). We numeri-
cally evaluated the temporal 1/e power half-width of the
SH pulse, t2 , as a function of L/Lgv , with the results
shown in Figs. 3(a) and 3(c).

In the quasi-stationary case, when the crystal length is
short enough such that the walk-off effects are negligible,
i.e., L ! Lgv , the SH pulse profile is just the square of the
Gaussian FH pulse and hence the SH pulse length is t2
5 t0 /A2. The condition L ! Lgv corresponds to the
frequency-domain condition DVg @ DV, i.e., DVg is broad
enough to accommodate conversion of all frequency com-
ponents, such that the grating does not affect the shape of
the SH.

Fig. 2. Square of absolute value of the transfer function for the
uniform grating, Eq. (33), uD̂(V)u2 } sinc2(VdnL/2) (solid curve)

and the square of the absolute value of A1
2̂(V) for a Gaussian FH

pulse, Eq. (37), uA1
2̂(V)u2 } exp(2t 0

2V2/4) for t0 5 dnL such that
L/Lgv 5 1 (dash-dotted curve) and t0 5 0.2dnL such that L/Lgv

5 5 (dashed curve). uD̂(V)u2 and uA1
2̂(V)u2 are plotted as func-

tions of normalized frequency (dnL)V.
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Fig. 3. (a), (c), normalized 1/e power half-width of a SH pulse, t2 /t0 , generated with a uniform grating of length L, as obtained from Eq.
(39) for a Gaussian FH pulse of the form of Eq. (37). (b), (d), the efficiency-reduction factor, g, Eq. (64) (solid curves), and the
(L/Lgv)g(L/Lgv) factor (dashed curves). t2 /t0 , g, and L/Lgv g(L/Lgv) are plotted as functions of L/Lgv on linear [(a) and (b)] and loga-
rithmic [(c) and (d)] scales.
With increasing L/Lgv , the SH pulse broadens, as seen
in Figs. 3(a) and 3(c), owing to the walk-off effect. In the
highly nonstationary limit, L @ Lgv , the SH pulse has a
top-hat profile and its half-width scales linearly with the
crystal length, t2 ' dnL/2.3,4,7–9 In the frequency do-
main this limit is equivalent to DVg ! DV. The spec-
trum of the SH is represented by the sinc factor in Eq.
(39), so the FH pulse shape has little effect on the SH
pulse shape in this limit.

6. NONUNIFORM QUASI-PHASE-
MATCHING GRATINGS AND PULSE
SHAPING
Let us consider a square nonuniform QPM grating whose
variations in the local period L(z) and in the local duty
cycle G(z) are slow, such that d(z) can still be accurately
represented as a sum of distinct Fourier components
dm(z), as in Eq. (31), but with z-dependent amplitude and
k vector. In this case the general form of dm(z) can be
written as

dm~z ! 5 udm~z !uexp@iK0mz 1 iFm~z !#, (41)
where we explicitly factored out the linear component of
the total phase of the grating, K0mz. Any desired phase
of the grating, Fm(z), beyond the K0mz component, can
be obtained by choice of the local k vector of the grating,
Km(z) 5 2pm/L(z), as

Km~z ! 5 K0m 1
dFm

dz
. (42)

udm(z)u in Eq. (41) is the amplitude of the mth Fourier
component of the grating, so an effectively continuous
modulation of udm(z)u can be engineered by variation of
the local duty cycle of the grating, as in Eq. (32), where
the duty cycle is now changing with z, G 5 G(z).

Engineerability of dm(z) establishes the grounds for
fairly general pulse shaping with QPM gratings. Indeed,
given the temporal shape of the FH pulse, E1(t), and the
desired shape of the SH pulse, E2(t), corresponding

frequency-domain envelopes, A1
2̂(V) and Â2(V), respec-

tively, are obtained by the Fourier transform. The trans-
fer function D̂(V), necessary to generate the desired
E2(t), is then calculated from Eq. (26) as
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D̂~V! 5
Â2~V!

A1
2̂~V!

. (43)

The required spatial distribution of the nonlinear coeffi-
cient, d(z), necessary for a particular shaping function
can be formally calculated from D̂(V), obtained with Eq.
(43), by the inverse Fourier transform of Eq. (25):

d~z ! 5 i
dn

2pg
exp~iDk0z !E

2`

1` Â2~V!

A1
2̂~V!

exp~iVdnz !dV.

(44)

We assume that the FH pulse spectrum overlaps the
transfer function in a region owing to only one order of
the QPM grating, i.e., udnVu ! Km11 2 Km 5 K1 for all

values of V for which A1
2̂(V) has nonnegligible magnitude.

In this case a physical QPM grating can then be synthe-
sized such that its appropriate component dm(z) is equal
to the mathematically formal d(z) calculated with Eq.
(44), and hence it will perform the desired transformation
of E1(t) into E2(t).

We note that dm(z) is limited from above by the non-
linear susceptibility of the medium. Therefore the ampli-
tude of Â2(V) in Eq. (44), and hence the amplitude of the
desired E2(t), cannot be arbitrarily high for a given

A1
2̂(V) and is in fact limited by the requirement that

ud(z)u < 2deff /pm. We also note that the transfer-
function relation, Eq. (26), does not set a limit on the
bandwidth of the generated SH. However, because a

QPM grating acts like a passive filter on A1
2̂(V), not an

amplifier, the bandwidth of the SH pulse cannot exceed
the bandwidth available from the FH, at least not without
significant efficiency reduction. Therefore the shortest
temporal feature of the shaped SH that can be obtained,
dt, is inversely related to the bandwidth, DV, available

from A1
2̂(V), i.e., dt } 1/DV, with the proportionality con-

stant being of the order of unity and its exact value de-
pending on the shape of the pulses. The maximum pos-
sible temporal window T (or the best spectral resolution
dV } 1/T) of the shaper is determined by the length L of
the device, i.e., T 5 dnL.

7. CHIRPED QUASI-PHASE-MATCHING
GRATINGS AND PULSE COMPRESSION
As a particular example of general pulse shaping, in this
section we discuss in more detail pulse compression with
chirped QPM gratings. Let us consider a square,
constant-duty-cycle, linearly chirped QPM grating whose
k vector changes linearly with z, and hence the relevant
component of whose spatial distribution of the nonlinear
coefficient can be written in the form

dm~z ! 5 udmuexp@iK0m~z 2 L/2! 1 iDg~z 2 L/2!2#

3 rect~z/L 2 1/2!, (45)

where udmu is defined by Eq. (32), Dg is the grating chirp
coefficient and rect(x) is a function defined such that
rect(x) 5 1 for uxu < 1/2 and rect(x) 5 0 otherwise.
This form of dm(z) is chosen such that at the center of the
grating, z 5 L/2, the z-dependent phase of the grating,
Fm(z), defined in Eq. (41), equals zero and the
z-dependent k vector of the grating, Km(z), equals the
carrier k vector K0m . The transfer function for this grat-
ing can be calculated with Eq. (25) as

D̂~V! 5 gudmu E
2L/2

1L/2

exp@2i~Dk0 2 K0m 1 dnV!z

1 iDgz2#dz, (46)

where we neglect a linear-in-V phase factor.
We recognize the integral in Eq. (46) as the well-known

Fresnel integral. When the bandwidth of the tuning

curve exceeds the bandwidth of A1
2̂(V), Eq. (46) can be ac-

curately approximated over the spectrum of the pulse by
the asymptotic form for an infinitely long crystal, result-
ing in

D̂~V! 5 gudmuA p

Dg
expS 2i

dn2V2

4Dg
D , (47)

where we assumed K0m 5 Dk0 . The form of Eq. (47)
suggests an analogy between the chirp rate of the QPM
grating, Dg , and GVD. Independent of the input FH
pulse shape, the SH experiences an additional effective
GVD relative to the FH of dn2/2Dg and therefore can be
compressed or stretched relative to the FH pulse.

As an example, we discuss the effect of the transfer
function of Eq. (47) on a chirped Gaussian input pulse.
We assume an input pulse that was created by dispersion
of a transform-limited Gaussian pulse of the form of Eq.
(37) in a linear delay line with GVD of C1 . The time-
domain envelope of the electric field that corresponds to
this pulse is

B1~0, t ! 5 E0

t0

At0
2 1 iC1

expF2
t2

2~t0
2 1 iC1!

G , (48)

and its 1/e power half-width is

t1 5 At0
2 1 ~C1 /t0!2. (49)

Using the frequency-domain envelope definition, Eq. (10),
we obtain Â1(V) for this pulse as

Â1~V! 5
1

A2p
E0t0 expF2

1

2
~t0

2 1 iC1!V2G . (50)

Substituting Eqs. (47) and (50) into Eq. (26), we obtain
the output SH envelope generated in the chirped grating:

Â2~L, V! 5
1

2
gudmuE0

2
1

ADg

t0
2

At0
2 1 iC1

3 expF2
1

2
~t0

2/2 1 iC2!V2G , (51)

where C2 is the chirp of the SH pulse:

C2 5
1

2
~C1 1 dn2/Dg!. (52)

Finally, by the inverse Fourier transform we find the
time-domain SH envelope as
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B2~L, t ! 5 gudmuE0
2A p

Dg

t0

t1
A t0

2 2 iC1

t0
2 1 i2C2

3 expF2
t2

2~t0
2/2 1 iC2!

G , (53)

where we neglect a constant shift in time of the pulse as a
whole. We note that the chirp of the SH pulse depends
on the chirp of the FH pulse and the chirp of the QPM
grating. The length of the SH pulse is given by

t2 5 A~t0A2 !2 1 ~A2C2 /t0!. (54)

If the QPM grating is designed such that

Dg 5 Dg
opt [ 2

dn2

C1
, (55)

then the SH pulse has no chirp, C2 5 0; i.e., it is trans-
form limited and the chirp on the input FH pulse has
been compensated by the QPM grating. In this case the
SH is given, to within a constant phase factor, by

B2~L, t ! 5 E2 expS 2
t2

t0
2D , (56)

where the amplitude of the generated SH wave is

E2 5 gudmuAt0

t1

ApC1

dn
E0

2. (57)

The results of Eqs. (49) and (54) are plotted in Fig. 4,
which shows pulse lengths of the input chirped FH pulse,
t1 , and the generated SH pulse, t2 , both normalized to
t0 , as functions of the normalized input FH chirp C1 /t0

2.
In this figure we take the normalized grating chirp
Dg(t0 /dn)2 5 20.1. As can be seen in Fig. 4, when the
FH pulse is chirped with C1 /t0

2 5 10, the chirp of the SH
pulse is zero, in accord with Eq. (52); i.e., the SH is com-
pressed and its length is t2 5 t0 /A2. The relative shift

Fig. 4. Normalized FH pulse length, t1 /t0 [solid curve, Eq.
(49)], normalized SH pulse length, t2 /t0 [dashed curve, Eq. (54)],
and normalized plane-wave efficiency, hPW/h0

PW [dash-dotted
line, Eq. (69)], plotted as functions of normalized FH chirp,
C1 /t0

2. A chirped grating with a normalized chirp Dg(t0 /dn)2

5 20.1 is assumed.
of the pulse-duration curves for the FH and the SH rep-
resents the effective GVD of the chirped QPM grating.

In deriving Eq. (47) we assumed that the chirped grat-
ing was long enough that its acceptance bandwidth, i.e.,
the width DVg of D̂(V) given by Eq. (46), was greater

than that of A1
2̂(V). The dependence of the bandwidth of

a chirped grating with a fixed Dg on the grating length
requires further elaboration. Equation (46) can be re-
written as

D̂~V! 5 gudmuA p

Dg
expS 2i

dn2V2

4Dg
DF~V!, (58)

with

F~V! 5
1

Ap
E

x02X

x01X

exp~ix2!dx, (59)

where we defined dimensionless parameters x0
5 2(dnV)/(2ADg) and X 5 ADgL/2. For a given Dg , x0
serves as a normalized frequency, and X serves as a nor-
malized crystal length. In Eq. (58) we explicitly factored
out the desired quadratic phase factor; the Fresnel inte-
gral F(V) defined by Eq. (59) represents a correction ow-
ing to finite crystal length. For a given Dg and large
enough L, such that X @ 1 and X @ x0 , Eq. (58) indeed
reduces to Eq. (47). Figure 5 shows representative
Fresnel integrals F(V) as a function of x0 for different
values of X. For X > 5 the amplitude of F(V) has a
characteristic top-hat shape with a bandwidth of Dx0
5 2X, over which the phase of F(V) is essentially zero.
The chirped grating bandwidth is then expressed in terms
of the crystal length as

DVg 5
2DgL

dn
. (60)

We note that for a fixed Dg the grating bandwidth scales
linearly with L. This expression can also be obtained by
our taking the difference between local k vectors at the
edges of the grating, DVgdn 5 Km(z 5 L) 2 Km(z 5 0)
5 2DgL.

Compared with the grating with large X, for small X
(X < 5), F(V) has significant amplitude modulation over
ux0u , X and, more importantly, more pronounced phase
modulation. The simple relation between the bandwidth
of the grating and its length, Eq. (60), does not hold in
this regime. Given the tolerances on the amplitude and
the phase modulation for a particular device, the appro-
priate length L can always be found with Eqs. (58) and
(59) such that the grating has the desired bandwidth
DVg .

In the regime X @ 1 the amplitude of D̂(V) is essen-
tially a top-hat function with width DVg given by Eq. (60).
For a Gaussian FH pulse of the form of Eq. (50), however,

A1
2̂(V) has a Gaussian profile with the 1/e spectral inten-

sity half-width of DV 5 A2/t0 , and spectral components
outside of the 6A2/t0 frequency range carry nonnegli-
gible spectral power. For fixed Dg , to accommodate con-
version of all frequency components, the length L of the
chirped grating has to be long enough such that DVg is
substantially broader than DV. However, as we will see
later, for confocal focusing with Gaussian beams, the effi-
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Fig. 5. Absolute value (solid curves) and phase (dashed curves) of representative integrals F(V), defined by Eq. (59), as a function of x0
for different values of X.
ciency scales inversely with L, and hence a compromise
between bandwidth matching and efficiency has to be
made.

If L is selected such that DVg is comparable to A2/t0 ,
the grating will effectively truncate the SH frequency
components V outside of the uVu < DVg/2 range, which
would have been generated in the grating of infinite
length. This spectral truncation leads to pulse broaden-
ing in the time domain as well as to some efficiency reduc-
tion. To quantify the problem we assume that the ampli-
tude of D̂(V) is a top-hat function with bandwidth of the
form DVg 5 N/t0 and compute the resulting SH pulse
temporal profile as a function of N. Figure 6 shows the
1/e temporal power half-width of the compressed SH
pulse and the SH pulse energy, both normalized to the re-
spective values that can be obtained with a grating of in-
finite length. As can be seen, for N . 6 the relative
pulse broadening owing to the spectral truncation is less
than 10%, and energy lost is less than 1%. Depending on
the tolerances an appropriate N can be selected with Fig.
6. The necessary grating length can then be obtained
with Eq. (60) as

L 5
N

2

dn

Dgt0
. (61)

For a grating designed to generate a compressed SH
pulse, Dg 5 Dg

opt , as defined in Eq. (55), the condition X
@ 1 is equivalent to the FH pulse being strongly chirped,
i.e., C1 @ t0

2, and hence from Eq. (49), t1
' uC1u/t0 . Equation (61) can then be rewritten as
L 5
N

2

t1

dn
, (62)

In the time domain, Eq. (62) can be interpreted as that
the SH pulse has to walk through in time over the central
Nt1/2 part of the FH pulse for frequency components of
the chirped FH pulse to be converted into the SH.

8. PLANE-WAVE EFFICIENCY SCALING
The energy-conversion efficiency is defined as the ratio of
the energy of the generated SH pulse, U2 , to the FH

Fig. 6. Effect of bandwidth truncation by a chirped grating of
finite length L 5 Ndn/(2Dgt0) on the SH pulse 1/e power half-
width (solid curve) and output energy (dash-dotted curve). Both
are normalized to respective values obtained with a grating of in-
finite length and plotted as functions of N.
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pulse energy, U1 . For plane waves the efficiency for a
general QPM-SHG pulse shaper is obtained from the
transfer-function relation, Eq. (26), by integration of the
input FH and the output SH spectral intensities over all
frequencies, resulting in

hPW [
U2

U1
5

n2

n1

E
2`

1`

uD~V!u2uA1
2̂~V!u2dV

E
2`

1`

uÂ1~V!u2dV

. (63)

As can be seen from Eq. (63), the efficiency scaling for a
general QPM-SHG shaper is a complicated function of the
input FH spectrum and the particular shaping function.
To derive the efficiency-scaling laws from Eq. (63) it is
necessary to assume a particular class of shaping devices
and a particular class of FH spectra. In the reminder of
this section we will assume a Gaussian, possibly linearly
chirped, FH pulse in the form of Eq. (50). Note that the
scaling laws derived in this section are valid for other
pulse shapes too, with small differences in the numerical
factors.

Let us first consider the efficiency scaling for a uniform
QPM grating, which has a transfer function given by Eq.
(33). Assuming that the FH pulse is transform limited
[Eq. (37)] and that the SHG process is quasi phase
matched, K0m 5 Dk0 , we obtain from Eq. (63)

hPW 5 2A2p2
udmu2

n1n2l1
2 E0

2L2g~L/Lgv!, (64)

where the group-velocity walk-off length Lgv is defined by
Eq. (40) and g(L/Lgv) is the efficiency-reduction factor,
shown in Figs. 3(b) and 3(d), as obtained by numerical in-
tegration of Eq. (63). For the quasi-stationary case,
when the walk-off effects can be neglected, i.e., when L
! Lgv , the efficiency reduction factor g 5 1; hence the
efficiency scales with L2 and Eq. (64) gives the quasi-cw
energy-efficiency expression for a long Gaussian pulse.
For the highly nonstationary case, i.e., when L @ Lgv ,
asymptotic evaluation of the integral in Eq. (63) shows
that g 5 A2pLgv /L, and hence the efficiency scales lin-
early with crystal length.9 However, the SH pulse length
also increases linearly with crystal length, as discussed in
Section 5 and shown in Fig. 3. From Fig. 3 it appears
that a reasonable compromise between the efficiency and
the SH pulse length is to use a crystal with length Lopt
5 2Lgv : the SH pulse length is equal to that of the FH
and g(L/Lgv 5 2) 5 0.764. For such a crystal the effi-
ciency is obtained from Eq. (64) as

h0
PW 5 21.3

udmu2

n1n2l1
2 E0

2Lgv
2. (65)

As a second example we consider a pulse shaper whose
acceptance bandwidth, DVg , is much narrower than the

bandwidth of A1
2̂(V), DV, such that we can replace A1

2̂(V)

with A1
2̂(V 5 0), which can then be factored out of the in-

tegral in the numerator of Eq. (63), resulting in
hPW 5
n2

n1

uA1
2̂~V 5 0 !u2E

2`

1`

uD̂~V!u2dV

E
2`

1`

uÂ1~V!u2dV

. (66)

The integral in the numerator of Eq. (66) is proportional
to the area under the tuning curve. According to Parse-
val’s theorem and Eq. (25), defining D̂(V), this area can
be expressed as

E
2`

1`

uD̂~V!u2dV 5
2pg2

dn
E

2`

1`

ud~z !u2dz

5
2pg2

dn
fLS 2deff

pm D 2

, (67)

where the second equality in Eq. (67) implicitly defines
the grating fill factor, f. Note that f 5 1 for a grating
with a constant duty cycle chosen to maximize udmu. We
note that the area under the tuning curve is proportional
to the grating length and does not depend on the details of
the grating phase modulation, i.e., the grating k-vector
distribution Km(z), as long as it gives the same fill factor
f. Substituting Eq. (67) into Eq. (66) and evaluating it for
a Gaussian pulse of the form Eq. (50), we obtain

hPW 5
A2p

g~L/Lgv 5 2 !

dnL

t1
fh0

PW , (68)

where we explicitly factored out h0
PW given by Eq. (65).

As can be seen from Eq. (68), hPW in the case when DVg is
much narrower than DV depends only on the material pa-
rameters and scales linearly with the crystal length and
the peak power of the FH pulse, as represented by the fac-
tor 1/t1 . All the grating properties are lumped into the
single fill factor f in this efficiency expression.

For the chirped QPM grating the transfer function is
given by Eq. (47) and the efficiency is obtained as

hPW 5
p

g~L/Lgv 5 2 !

dn2

Dgt1t0
h0

PW . (69)

We note that hPW is independent of the crystal length, as
long as the length is chosen according to Eq. (61) with N
. 6, such that the chirped grating has enough band-
width to accommodate the conversion of all frequency
components. The scaling of the efficiency thus depends
on which experimental parameters are held constant. If
the chirp on the QPM grating, Dg , is fixed, hPW scales
with the peak intensity of the stretched FH pulse, as
shown in Fig. 4, where hPW/h0

PW is plotted in as a function
of normalized FH chirp, C1 /t0

2. However, if the grating
chirp is chosen to generate a compressed SH pulse, i.e.,
Dg 5 Dg

opt and the FH pulse is strongly chirped, C1
@ t0

2, then Eq. (69) reduces to hPW 5 4.11h0
PW , which no

longer depends on the amount of stretching.

9. EFFICIENCY SCALING WITH FOCUSED
BEAMS
Most applications require high efficiency and therefore
confocal focusing of the FH beam in the nonlinear mate-
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rial. We will include the effects of focusing into the effi-
ciency calculations by generalizing the results of Boyd
and Kleinman for cw SHG of Gaussian beams.34 The
plane-wave nonstationary efficiency described by general
expression (63) is still applicable in the near-field limit.
However, when the interaction occurs in neither the near-
field nor the stationary limit, the focusing conditions and
the temporal effects become coupled and lead to compli-
cated efficiency expressions. With this caveat we will
still treat the focusing and temporal effects indepen-
dently, which allows a straightforward generalization of
the Boyd and Kleinman results for cw SHG to the descrip-
tion of focused ultrashort-pulse SHG, and we obtain
simple efficiency-scaling laws. We use the effective area
of the FH beam for cw SHG, Seff 5 Ll1/4n1h, where h is
the Boyd and Kleinman cw SHG focusing factor.34 In
this section we derive the energy efficiency for the same
specific cases as in the previous section.

We define the confocal efficiency hconf as the energy ef-
ficiency when the FH Gaussian beam is confocally focused
and hence h 5 0.8.34 The confocal efficiency for a uni-
form grating is obtained from Eq. (64) as

hconf 5
8pA2p

ce0

udmu2

dnn1n2l1
3 U1

L

Lgv
g~L/Lgv!h, (70)

where we expressed the peak amplitude of the FH pulse
in terms of its pulse energy and the pulse length, and the
latter is incorporated into the factor Lgv , defined in Eq.
(40); Figs. 3(b) and 3(d) show the factor L/Lgv g(L/Lgv) as
a function of L/Lgv . In the quasi-stationary case, i.e.,
L ! Lgv , g 5 1, and the confocal efficiency scales linearly
with L.9 In the highly nonstationary case when L
@ Lgv , g approaches A2pLgv /L, and hconf saturates, be-
coming independent of the crystal length.9 From Fig. 3 it
is clear that confocal focusing with a crystal of length of
Lopt 5 2Lgv results in efficiency within a factor of 0.61 of
the maximum available and generates SH pulses with
negligible pulse broadening relative to the FH pulse.
The confocal efficiency for the crystal of length Lopt is then

h0
conf 5

76.7

e0l1
3 FOMU1 , (71)

where the material figure of merit, FOM, is defined as

FOM 5
udmu2

cdnn1n2
. (72)

The efficiency depends only on material properties, repre-
sented by the figure of merit, and the FH pulse energy.

For a general pulse shaper in the regime DVg ! DV we
obtain the energy efficiency from Eq. (68) as

hconf 5
A2p

g~L/Lgv 5 2 !

t0

t1
fh0

conf . (73)

We note that this confocal efficiency is independent of the
crystal length and the grating-modulation parameters
other than the fill factor f. The important distinction be-
tween the filtering action of a QPM grating and that of a
conventional linear band-pass filter is that the latter re-
jects energy outside of the pass band, whereas for the
former the energy efficiency is independent of DVg .
For a chirped grating the efficiency for the confocal fo-
cusing case is obtained from Eq. (69) as

hconf 5
2p

g~L/Lgv 5 2 !

t0

t1

1

N
h0

conf , (74)

where we assume that the crystal length is given by Eq.
(61) and that the SH pulse energy loss owing to spectral
truncation is negligible. Thus in the confocally focused
case, hconf scales with the peak intensity of the stretched
FH pulse and therefore, for fixed pulse energy, inversely
with the stretching ratio, t0 /t1 . The factor 1/N in Eq.
(74) represents the scaling of hconf with the chirped grat-
ing length, L } N from Eq. (61). Selecting N 5 6 as a
reasonable compromise between efficiency and pulse
length (Fig. 6), we obtain that the chirped-grating case
suffers an efficiency reduction of 0.69t0 /t1 , as compared
with the optimized unchirped case.

It is interesting to note that as long as the chirped grat-
ing has an adequate acceptance bandwidth, i.e., for a
given Dg the grating length is selected according to Eq.
(61), hconf is independent of the grating chirp, and hence
given the amount of FH stretching, the SH will be gener-
ated with the same efficiency for compressed or chirped
SH pulses.

Many important laser systems that may be used as
pump sources for the pulse-compression process analyzed
above have the property of being peak-power limited.
With such sources the pulse energy increases linearly
with pulse duration and therefore increases linearly with
stretching for a fixed bandwidth. Thus, if we consider
the result of Eq. (74), SHG of such sources has an energy-
conversion efficiency that is independent of stretching. A
more detailed discussion of efficiency scaling appears in
Ref. 26.

10. COMPARISON OF QUASI-PHASE-
MATCHING MATERIALS
We now consider several technologically important QPM
materials in the context of ultrashort-pulse SHG. Table
1 lists key parameters for SHG of the FH at wavelengths
1.56 mm and 800 nm in periodically poled lithium niobate
(PPLN), lithium tantalate (PPLT), potassium niobate
(PPKN), potassium titanyl phosphate (PPKTP), and ru-
bidium titanyl arsenate (PPRTA). d33 is the largest ele-
ment of the tensor of nonlinear coefficients for all materi-
als considered here, and hence the first-order (m 5 1)
modulation of d33 gives the largest possible QPM nonlin-
earity, (2/p)d33 , as obtained from Eq. (32) by substitution
of d33 for deff . All materials in Table 1 have comparable
nonlinearities that are at least an order of magnitude
higher than that of conventional birefringently phase-
matched interactions, except for potassium niobate whose
d31 is comparable to d33 .

The GVM parameter dn is critical for spectral and tem-
poral performance of a SHG device. For a fixed length of
the crystal, dn determines the available amount of group
delay between FH and SH, and hence determines the
longest temporal window in a QPM-SHG pulse shaper,
T 5 dnL (as discussed in Section 6), and therefore the
maximum possible compression ratio in a chirped QPM
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Table 1. Comparison of Nonlinear Coefficient, GVM Parameter, Figure of Merit, and Confocal Efficiency
for Several QPM Materials

dn, ps/mm FOM, pm2/V2 h0
conf , %/nJ

Material d33 , pm/V 1.56 mm 800 nm 1.56 mm 800 nm 1.56 mm 800 nm

PPLN35 27 0.30 1.90 708 102 162 173
PPLT36 15 0.25 1.53 270 40 61 68
PPKN37 27 0.32 2.40 680 83 155 140
PPKTP38 17 0.20 1.64 572 65 131 111
PPRTA39 16 0.24 1.73 405 52 92 88
grating, as can be obtained from Eq. (62): t1 /t0
5 dnL/2t0 . Therefore for applications that require
large group delays, it is advantageous to have large dn.
The GVM parameter is highly dispersive and increases
for shorter wavelengths. Because the maximum length
of available QPM materials is of the order of several cen-
timeters, the maximum group delay is in the range of 20
to 100 ps, which depends on the wavelength and the ma-
terial used.

From the standpoint of achieving the highest possible
efficiency, having a large GVM parameter is disadvanta-
geous because the material figure of merit for ultrashort-
pulse SHG, defined by Eq. (72), scales inversely with dn.
Among the materials considered here, PPLN has the best
FOM because of its high nonlinearity and relatively low
dn. The FOM determines the confocal efficiency h0

conf of a
uniform grating with optimum length, Eq. (71), and hence
the confocal efficiency of all devices considered in this pa-
per, Eqs. (70), (73), and (74). For a given material and
FH wavelength, h0

conf scales linearly with the FH pulse
energy and hence can be normalized to energy and can be
expressed in units of % 3 (energy)21. Figure 7 shows
such normalized h0

conf as a function of wavelength for all
QPM materials considered here. It is interesting to note
that the material dispersion nearly cancels the explicit
1/l1

3 dependence of h0
conf , Eq. (71), resulting in a fairly

constant efficiency over the visible to the near-infrared
spectral region. We note, however, that the two-photon
absorption of the SH can be significant in the wavelength
region accessible with Ti:sapphire lasers (;800 nm) be-
cause of the high peak power of ultrashort pulses, and

Fig. 7. SHG conversion efficiency h0
conf as a function of the FH

wavelength for representative first-QPM-order materials.
consequently the efficiencies shown in Fig. 7 may not be
attainable in this spectral region.

11. SUMMARY AND FURTHER
DIRECTIONS
In summary, we described a theory of SHG with longitu-
dinally nonuniform QPM gratings in the undepleted-
pump approximation. The use of frequency-domain en-
velopes with frequency-dependent k vectors allowed a
simple derivation of the output SH field in the presence of
arbitrary material dispersion. Neglecting GVD and
higher-order dispersion, we obtained a transfer-function
relationship describing the SHG process. This SHG
transfer function depends only on material properties and
on the QPM grating design. We showed that engineer-
ability of the QPM gratings, and hence of the transfer
function, is a basis for generation of nearly arbitrarily
shaped SH pulses. We analyzed in detail a technologi-
cally important example of pulse shaping, the generation
of compressed SH pulses from linearly chirped FH input
pulses. We also derived the efficiency-scaling laws for
several types of SHG devices.

In highly dispersive materials, or with wide-bandwidth
FH fields, the simple transfer-function relation may no
longer be accurate because it neglects GVD and higher-
order dispersion at both FH and SH frequencies. Be-
cause dispersion is larger at shorter wavelengths, the
GVD parameter at the SH is typically several times
larger than that at the FH. It turns out that GVD and
higher-order dispersion at the SH can straightforwardly
be incorporated into the transfer-function description and
are accounted for by appropriate choice of the k vector
and/or the duty cycle of the grating. To the first order,
GVD at the SH leads to the extra chirp of b2L on the SH,
and a linearly chirped grating can still be used for com-
pression; however, its chirp Dg

opt should be selected as
Dg

opt 5 2dn2/(C1 1 b2L), rather than Dg
opt given by Eq.

(55). Inclusion of the GVD at the FH leads to a non-
transfer-function expression for the SH. However, for a
given FH pulse shape, GVD still can be accounted for in
the design of the QPM grating. For example, a QPM
grating required for pulse compression in the presence of
GVD has a chirp that is nonlinear with length. The de-
tails of this study will appear in a subsequent paper.

Inclusion of pump depletion is important for under-
standing the limitations it imposes in the high-
conversion-efficiency regime. Our preliminary numerical
studies indicate that the cascaded phase shifts associated
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with the back reaction of the SH on the FH can be impor-
tant, but that for compression in gratings of optimal
length, conversion approaching 50% with performance
similar to the low-conversion case is possible.40 Further
work is necessary to clarify the limitations.
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