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A theoretical treatment of group-velocity dispersion and higher-order dispersion effects on the second-
harmonic-generation (SHG) process with longitudinally nonuniform quasi-phase-matching (QPM) gratings is
presented. We show how these dispersion terms can be accounted for in the design of a QPM-SHG pulse
shaper. Our numerical simulation results show that, if the proper dispersion correction is included in the
QPM grating design, one can generate sub-10-fs transform-limited pulses at 400 nm by doubling the output of
a Ti:sapphire oscillator. © 2000 Optical Society of America [S0740-3224(00)00808-0]
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1. INTRODUCTION
Frequency doubling of ultrashort pulses is a powerful and
versatile technique for converting laser pulses to wave-
length regions in which direct generation is difficult or
even impossible. For such ultrafast frequency convert-
ers, the dispersive properties of the nonlinear optical ma-
terial play a crucial role. In general, pulses at different
wavelengths propagate through a medium with different
group velocities, leading to temporal walk-off. This
group-velocity mismatch (GVM) between the first-
harmonic (FH) and the second-harmonic (SH) pulses puts
a restriction on the length of the nonlinear crystal that
can be used to generate the SH pulses without substan-
tial broadening relative to the FH pulses.1–5 This char-
acteristic length is called a group-velocity walk-off length,
Lgv , and is defined as Lgv 5 t0 /udvu, where t0 is the
initial pulse length of the transform-limited FH pulse
and the GVM parameter dv 5 1/u1 2 1/u2 , with u1
and u2 being the FH and the SH group velocities, respec-
tively.

Intrapulse group-velocity dispersion (GVD), a second-
order effect in comparison with GVM, is generally not sig-
nificant in single-pass devices shorter than one walk-off
length and hence can be neglected, provided that this con-
dition is satisfied. When a short pulse propagates
through a medium over a length for which GVD is non-
negligible the medium adds some linear chirp to the
pulse, proportional to the length traveled, resulting in a
change of the shape and amplitude of the pulse.4,6 The
characteristic length over which the GVD effect becomes
important is Lb 5 t0

2/ubu, where b is the GVD coefficient.
Higher-order dispersion beyond GVD leads to even fur-
ther distortion of the pulse and causes asymmetry in the
pulse profile.4,6 For a given length of the nonlinear me-
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dium, GVD and higher-order dispersion become increas-
ingly important for shorter pulses and/or toward shorter
wavelengths, in the case of normal dispersion. The ef-
fects of GVD during second-harmonic generation (SHG) in
uniform crystals, in particular, the dispersive shaping of
the pulses caused by GVD, were previously considered in
the literature.7,8

Recently, microstructured quasi-phase-matching
(QPM) materials have been used in ultrafast frequency
conversion devices. QPM9,10 offers the benefits of using
noncritical propagation geometries and large nonlinear
coefficients. More importantly, for ultrafast applications,
QPM provides extra degrees of freedom in engineering
the amplitude and phase responses of the frequency con-
verter, a function not available with conventional bire-
fringent phase matching. QPM devices have been used
to combine such ultrafast techniques as pulse shaping
and compression with frequency conversion in compact
and monolithic devices.11–17 These devices require that
the length of the QPM grating be at least several walk-off
lengths long,18,19 and hence GVD will have a noticeable
effect that must be taken into account.

We have already presented a theoretical treatment of
the SHG process with longitudinally nonuniform QPM
gratings in the undepleted pump approximation in Ref.
19. In that work we used a frequency-domain analysis to
obtain an expression for the generated SH field in an in-
tegral form, valid for arbitrary material dispersion and an
arbitrarily modulated QPM grating. Neglecting GVD
and higher-order dispersion, we arrived at a simpler ex-
pression for the SH field, which had the form of a transfer
function in the frequency domain. Even though this
transfer function formalism is restricted to cases in which
dispersion beyond GVM is negligible, it allowed us to de-
2000 Optical Society of America



Imeshev et al. Vol. 17, No. 8 /August 2000 /J. Opt. Soc. Am. B 1421
rive the essential features of pulse shaping and compres-
sion, which rely on the GVM and the spatial localization
of conversion in a longitudinally nonuniform grating.
The advantage of such a transfer function relation is that
it enabled us to obtain a straightforward explicit proce-
dure for the design of the grating function required for a
particular shaping function. We analyzed in detail a par-
ticular case of shaping: pulse compression with linearly
chirped gratings.

The theoretical treatment in this paper is based on re-
sults obtained in Ref. 19. Here we present a detailed
treatment of the GVD and higher-order material disper-
sion effects and show how they can be accounted for in the
design of a QPM-SHG pulse shaper. This paper is orga-
nized as follows. In Section 2 we give an intuitive time-
domain description of the process and indicate how these
time-domain considerations can be used to design a
chirped grating compressor for cases in which GVD and
higher-order dispersion are nonnegligible. In Section 3
we introduce the mathematical formalism for description
of longitudinally nonuniform QPM gratings by represent-
ing the modulated nonlinear coefficient as a sum of its
spatial Fourier components with slowly varying ampli-
tudes. In Section 4 we present a general expression for
the SH field generated in a nonuniform QPM grating,
valid for arbitrary dispersion, as well as the transfer func-
tion result in the limiting case of negligible GVD and
higher-order dispersion, as originally derived in Ref. 19.
We also find that a similar transfer function relation ex-
ists for arbitrary dispersion at the SH as long as GVD and
higher-order dispersion at the FH are negligible. In Sec-
tion 5 we consider the effects of GVD on the cw SHG tun-
ing curves with uniform QPM gratings. In Section 6 we
consider the performance of a linearly chirped grating as
a compressor in the case of nonnegligible GVD at the SH
and show that, to first order, a linearly chirped grating
will still compensate for the quadratic phase of the FH
pulse, whereas the optimum grating chirp for compres-
sion is shifted from that in the negligible-GVD case. In
Section 7, by assuming that in a strongly chirped grating
conversion of each spectral component occurs over a dis-
tance that is small as compared with the grating length,
we develop a procedure for choosing the necessary grating
function for arbitrary pulse shaping in the presence of ar-
bitrary dispersion. Section 8 presents the analytical
treatment of the selection of the appropriate grating func-
tion for compression. While the treatment in this section
is limited to linearly chirped Gaussian pulses and no dis-
persion beyond GVD, it does not require the assumption
of localized conversion, which is used in Section 7. In
Section 9 we present the results of numerical modeling of
pulse compression with several different pulse shapes:
Gaussian, hyperbolic secant, and sinclike (as characteris-
tic for pulses with top-hat spectra). We predict that, if
the dispersion is accounted for according to design rules
developed in Sections 7 and 8, generation of transform-
limited sub-10-fs pulses at 400 nm is possible by doubling
of stretched pulses at 800 nm with a pulse length of 10 fs
before stretching. Section 10 presents the comparison of
the dispersion data for several common QPM ferroelec-
trics. Finally, we summarize the results of this paper in
Section 11.
2. TIME-DOMAIN PICTURE OF PULSE
SHAPING AND COMPRESSION
WITH NONUNIFORM QUASI-PHASE-
MATCHING GRATINGS IN THE PRESENCE
OF GROUP-VELOCITY DISPERSION
Pulse compression with longitudinally nonuniform QPM
gratings, a particular case of more-general pulse shaping,
can be most intuitively understood in the time domain.
It relies on the combination of two phenomena: the dis-
persion of group velocities, which is a material property,
and spatial localization of the SHG process, determined
by the local k-vector of the QPM grating, which can be en-
gineered. To first order, dispersion causes FH and SH
pulses to propagate with different group velocities, u1 and
u2 , respectively, leading to the GVM. If the second-order
dispersion (GVD) and higher-order dispersion are negli-
gible, all frequency components within the spectrum of a
particular pulse will propagate with the same group ve-
locity. More importantly, all frequency components of
the nonlinear polarization wave, which drives the conver-
sion and is proportional to the square of the FH pulse
temporal profile, propagate with the same group velocity
u1 as the components of the FH pulse itself. A particular
frequency component of the nonlinear polarization gener-
ates the SH component at the same frequency at some lo-
cation z0 in the crystal, where the grating local k-vector is
equal to the k-vector mismatch evaluated for this fre-
quency (i.e., meets the phase-matching condition). It
takes a certain time (the group delay time), determined
by u1 and the initial chirp of the FH pulse, for this
component to arrive at position z0 . After the SH field is
generated it travels toward the exit of the crystal with
group velocity u2 Þ u1 . The grating design procedure
for pulse compression is then to require that the conver-
sion locations for different spectral components be se-
lected such that these SH frequency components arrive at
the output of the grating at the same time, thus requiring
a linearly chirped grating if it is to generate a compressed
SH pulse.

If the second-order dispersion (GVD) and the higher-
order dispersion are nonnegligible, different spectral com-
ponents within each pulse will propagate with different
group velocities. Moreover, the propagation law for the
frequency components of the nonlinear polarization is dif-
ferent from that of the FH pulse, resulting in a more com-
plicated accounting of the group delay for different com-
ponents. The time-domain cartoon approach described
above for the negligible-GVD case still allows derivation
of the grating chirp required for compression in the pres-
ence of GVD and produces a result that is almost the
same as that of the more accurate frequency-domain
analysis, presented in Sections 7 and 8. The grating
chirp, required for compression in the presence of GVD, is
not linear with distance.

This simplified time-domain description assumes that
the conversion process for each frequency component is
localized at a point. Even though this assumption is not
rigorously correct, the advantage of the approximate ap-
proach is that it is applicable to more-general cases than
can be handled with the exact method of Section 8. This
localization of conversion assumption is put into more
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mathematically rigorous terms by the stationary phase
method described in Section 7.

We also note that, to achieve a uniform conversion for
all components when GVD is present, the grating ampli-
tude should be modulated along z; otherwise, different
components will be converted with different efficiencies.
This is a result of two effects. First, the GVD results not
only in the position-dependent spreading of frequency
components but also in a change of the amplitude of the
nonlinear polarization along the propagation direction,
which must be compensated for by the amplitude of the
QPM grating. We can understand the second effect caus-
ing the efficiency nonuniformity for different components
by realizing that the conversion is not happening at a
point where the phase-matching condition is satisfied ex-
actly but rather that it occurs over a finite range of grat-
ing k-vectors. As the rate at which the grating k-vector
changes with distance is not constant for nonlinearly
chirped gratings, the distance over which a particular fre-
quency component is phase matched also varies, leading
to different efficiencies for different frequency compo-
nents.

3. LONGITUDINALLY NONUNIFORM
QUASI-PHASE-MATCHING GRATINGS
QPM gratings generally use sign reversal of the nonlinear
coefficient along the crystal length in a periodic or aperi-
odic fashion; i.e., mathematically, d(z) is a square wave
whose amplitude is the intrinsic nonlinear coefficient of
the material, deff . Assuming that period and duty cycle
modulations are slow, d(z) can be decomposed into the
spatial Fourier components dm(z) with slowly varying
amplitudes and phases:

d~z ! 5 (
m52`

`

dm~z !

5 (
m52`

`

udm~z !uexp@iK0mz 1 iwm~z !#, (3.1)

where we explicitly factored out the linear component,
K0mz, of the total phase of each Fourier component of the
grating, Fm(z) [ K0mz 1 wm(z). The carrier k-vector of
the grating is K0m 5 2pm/L0 , where L0 is the nominal
period for QPM. The local k-vector of the grating is then

Km~z ! 5
dFm

dz
5 K0m 1

dwm

dz
(3.2)

and is related to the local QPM period L(z) as Km(z)
5 2pm/L(z). Since L(z) is engineerable, the position-
dependent k-vector of an appropriate Fourier component
of the grating is engineerable too.

In Eq. (3.1), udm(z)u is the amplitude of the mth Fourier
component of the grating, which is related to the local
grating duty cycle G(z) as10

udm~z !u 5
2

pm
deff sin@pmG~z !#, (3.3)

and hence can also be engineered by control of the local
duty cycle of the square grating. If G(z) 5 0, i.e., the
material is unmodulated, then udm(z)u 5 0, which indi-
cates that there is no modulated component of the QPM
grating. The maximum value of udm(z)u is (2/pm)deff ,
which is achieved at G 5 0.5 for an odd order or at G
5 1/(2m) for an even-order QPM process.

For the analysis presented in this paper we assume
that different Fourier components of the QPM grating do
not overlap in k space and that spectra of the interacting
pulses are narrow enough such that they interact with
only one QPM order. Consequently, the modulated non-
linear coefficient d(z) will be represented by only one rel-
evant Fourier component, and from now on we will omit
its QPM order subscript m. We note, however, that the
ability to utilize different QPM orders of the same grating
can be advantageous for phase matching several nonlin-
ear processes simultaneously.20–25

4. GENERAL DESCRIPTION OF THE
SECOND-HARMONIC-GENERATION
PROCESS IN THE FREQUENCY DOMAIN
We start the analysis by considering a QPM grating of
length L with longitudinally modulated nonlinear coeffi-
cient d(z). We describe the interacting FH and SH fields
with the frequency-domain electric field envelopes, as in-
troduced and discussed in detail in Ref. 19. These enve-
lopes have the frequency-dependent k-vector k(v) explic-
itly factored out and are defined by

Ê~z, v! 5 Â~z, V!exp@2ik~v0 1 V!z#, (4.1)

where Ê(z, v) is the Fourier transform of the electric
field, Â(z, V) is the frequency-domain envelope, and V
5 v 2 v0 is the frequency detuning from the optical car-
rier frequency v0 . These envelopes are to be distin-
guished from the conventional time-domain envelopes
B(z, t), which are defined by

E~z, t ! 5 B~z, t !exp~iv0t 2 ik0z !, (4.2)

where E(z,t) is the electric field and k0 [ k(v0) is the
carrier k-vector.

Assuming the validity of the slowly varying amplitude
approximation, an undepleted pump, and a plane-wave
interaction, the coupled wave equations governing the
propagation of the FH envelope Â1(z, V) and the SH en-
velope Â2(z, V) were obtained in Ref. 19 as follows (here
and in the remainder of the paper we use the subscript 1
to denote the FH and the subscript 2 to denote the SH):

]

]z
Â1~z, V! 5 0, (4.3)

]

]z
Â2~z, V! 5 2i

m0v2
2

2k2
P̂NL~z, V!exp@ik~v2 1 V!z#,

(4.4)

where V 5 v 2 v2 is the detuning from the carrier fre-
quency of the SH pulse. In Eq. (4.4) the nonlinear polar-
ization P̂NL(z, V) is
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P̂NL~z, V! 5 «0d~z !E
2`

1`

Â1~z, V8!Â1~z, V 2 V8!

3 exp$2i@k~v1 1 V8!

1 k~v1 1 V 2 V8!#z%dV8. (4.5)

Equation (4.3) describes free propagation of the FH
wave through the dispersive medium; its solution is

Â1~z, V! 5 Â1~V!, (4.6)

where Â1(V) [ Â1(z 5 0, V) is the envelope at the input
(z 5 0) of the grating. The FH frequency-domain enve-
lope is independent of z, even though the pulse does expe-
rience dispersive broadening, as can be obtained from Eq.
(4.6) through Eq. (4.1) as

Ê1~z, v! 5 Ê1~z 5 0, v!exp@2ik~v!z#, (4.7)

which is a result well known from the literature.4,6

Substituting the solution for the FH envelope, Eq. (4.6),
into the expression for P̂NL(z, V), Eq. (4.5), and integrat-
ing Eq. (4.4) with this result for P̂NL(z, V), we obtain the
output envelope of the SH pulse, Â2(L, V), as

Â2~L, V! 5 E
2`

1`

Â1~V8!Â1~V 2 V8!d̂@Dk~V, V8!#dV8.

(4.8)

The d̂@Dk(V, V8)# factor in Eq. (4.8) is proportional to
the spatial Fourier transform of d(z), with Dk(V, V8)
serving as the transform variable:

d̂~Dk ! 5 2igE
2`

1`

d~z !exp~2iDkz !d z, (4.9)

where g [ 2p/l1n2 , l1 is the free-space FH wavelength,
and n2 is the refractive index at the SH frequency. We
extended the limits of integration in Eq. (4.9) from [0, L]
to (2`, 1`) by defining d(z) [ 0 outside the grating.
The k-vector mismatch Dk(V, V8) is defined as

Dk~V, V8! 5 k~v1 1 V8!

1 k~v1 1 V 2 V8! 2 k~v2 1 V!. (4.10)

Performing the Taylor expansion of Eq. (4.10), we obtain
Dk(V, V8) as a sum of V8-independent and V8-dependent
terms,

Dk~V, V8! 5 Dk8~V! 1 Dk9~V, V8!, (4.11)

with

Dk8~V! [ Dk0 1 dnV 1
1
2 dbV2 1 dk8~V!,

(4.12)

Dk9~V, V8! [ b1~V82 2 VV8! 1 dk9~V, V8!, (4.13)

where Dk0 5 2k1 2 k2 is the carrier k-vector mismatch,
dn 5 1/u1 2 1/u2 is the GVM parameter with the group
velocities ui 5 @dk(v)/dv#21uv5vi

, and db 5 b1 2 b2 is
the GVD mismatch parameter with the GVD parameters
b i 5 @d2k(v)/dv2#uv5vi

. The remainder term dk8(V) is
of the order of V3, and the remainder term dk9(V, V8) is
of the order of V3 and V83; in principle, these terms can
be written out for arbitrarily high dispersion order. Note
that in the ultrafast literature it is common to use b2 for
the GVD coefficient of the dispersive material at a par-
ticular wavelength. Here, however, for notational sim-
plicity we use b i for the GVD coefficient, with the sub-
script referring to either the FH or the SH.

Equations (4.8)–(4.10) are fairly general results, valid
for arbitrary pulse shapes, pulse durations, and disper-
sion, as long as the undepleted pump and slowly varying
amplitude approximations are valid assumptions. Equa-
tion (4.8) is an explicit expression for finding the output
SH envelope Â2(L, V), given (i) the input FH envelope
Â1(V), (ii) the dispersion properties of the medium, rep-
resented by Dk(V, V8), and (iii) the spatially modulated
nonlinear coefficient d(z). However, from a practical
standpoint, since the QPM grating function is engineer-
able, it is desirable to know what grating should be cho-
sen to generate a particular SH pulse, given the available
FH pulse, and if implementation of such a design is fea-
sible. In its present form Eq. (4.8) does not provide a
ready way to obtain such a design.

In Ref. 19 it was shown that, if GVD and higher-order
dispersion terms are negligible, d̂@Dk(V, V8)# becomes
independent of V8, as is apparent from Eqs. (4.11)–(4.13),
and hence can be factored out from under the integral in
Eq. (4.8). We introduce new notation for this special
case, D̂0(V) [ d̂(Dk0 1 dnV), or, explicitly

D̂0~V! 5 2igE
2`

1`

d~z !exp@2i~Dk0 1 dnV!z#d z. (4.14)

From Eq. (4.8) we obtain

Â2~L, V! 5 D̂0~V!A1
2̂~V!, (4.15)

where A1
2̂(V) is a self-convolution of Â1(V):

A1
2̂~V! 5 E

2`

1`

Â1~V8!Â1~V 2 V8!dV8. (4.16)

Equation (4.15) is the key result of Ref. 19; it relates
the spectra of the FH and the SH through the transfer
function D̂0(V), which depends on the dispersive proper-
ties of the medium and on the modulated nonlinear coef-
ficient but not on any of the input or output pulse param-
eters, and hence can be viewed as a filter in the frequency
domain. The advantage of such a transfer function
relation, as compared with the more general Eq. (4.8),
is that is provides a simple way to design the QPM
grating necessary for generation of a desired SH pulse
from a given FH pulse. The necessary D̂0(V) is simply
Â2(L, V)/A1

2̂(V), from which d(z) is obtained with the in-
verse Fourier transform. We note that Eq. (4.15) is valid
for arbitrary pulse shapes and hence is a basis for general
pulse shaping with QPM gratings, as long as GVD is
negligible.12,19

Mathematically, the transfer function result of Eq.
(4.15) arises because Dk(V, V8), as defined by Eqs.
(4.11)–(4.13), and hence d̂(Dk), are independent of V8.
We note that the V8-dependent part of Dk(V, V8),
dk9(V, V8), defined by Eq. (4.13), contains only the FH
dispersion parameters; all the SH dispersion is accounted
for in Eq. (4.12). Hence keeping the GVD and higher-
order dispersion terms at the SH [Eq. (4.12)] but neglect-
ing those at the FH still produces a transfer function
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result. For this case, we introduce notation for the trans-
fer function, D̂2(V) [ d̂@Dk8(V)#, or, explicitly,

D̂2~V! 5 2igE
2`

1`

d~z !exp@2iDk8~V!z#d z, (4.17)

and the transfer function relation is now

Â2~L, V! 5 D̂2~V!A1
2̂~V!. (4.18)

The transfer function D̂2(V), as defined by Eq. (4.17), is a
generalization of D̂0(V) and can be used for the design of
a general QPM pulse shaping device, in a way similar to
the design prescription presented in Ref. 19.

If the GVD at the FH cannot be neglected, the simple
transfer function relation does not hold, and one has to
use Eq. (4.8). In Section 7 we develop a procedure for the
design of the phase of the QPM grating, valid for arbi-
trary dispersion and pulse shapes, but have to assume a
strongly chirped grating for this derivation. In Section 8
we find that, for a restricted class of Gaussian FH pulses
with possible linear chirp and no dispersion beyond GVD
at the FH, Eq. (4.8) can be integrated in a closed form to
yield a relation similar to the transfer function relation of
Eqs. (4.15) and (4.18), though with a filter function depen-
dent on the parameters of the input pulse.

5. UNIFORM GRATINGS AND
CONTINUOUS-WAVE TUNING CURVES
Let us first consider the effects of GVD on the cw SHG
process with a uniform QPM grating. The input FH field
is a monochromatic wave with frequency v1 1 V1 , where
V1 is the detuning from the nominal (in the sense of the
envelope carrier) FH optical frequency, v1 . Thus

E1~z 5 0, t ! 5 E1 exp@i~v1 1 V1!t#. (5.1)

The frequency-domain envelope is obtained from Eq. (4.1)
as

Â1~V! 5 E1d ~V 2 V1!. (5.2)

The modulated nonlinear coefficient for the constant-
duty-cycle uniform QPM grating of length L and period
L0 (and hence with grating k-vector K0 5 2p/L0) is rep-
resented as

d~z ! 5 uduexp~iK0z !rectS z

L
2

1

2 D , (5.3)

where rect(x) 5 1 for uxu < 1/2 and rect(x) 5 0 other-
wise. Substituting Eqs. (5.2) and (5.3) into Eqs. (4.8)–
(4.10), we obtain

Â2~L, V 5 2V1! 5 E1
2d̂@Dk~V!#, (5.4)

where, neglecting a phase factor linear in V,

d̂@Dk~V!# 5 gLudusinc$@Dk~V! 2 K0#L/2%, (5.5)

and the k-vector mismatch is

Dk~V! 5 2k~v1 1 V/2! 2 k~v2 1 V! (5.6)

or, by evaluation of the Taylor expansion up to the GVD
terms in Eq. (5.6),
Dk~V! 5 Dk0 1 dnV 1
1

2 S 1

2
b1 2 b2DV2. (5.7)

The result of Eq. (5.5) is a familiar cw SHG sinc tuning
curve, whose width in the frequency space DVg is defined
implicitly by @Dk(DVg) 2 K0#L ; 1 and hence scales in-
versely with grating length L. There are two distinct re-
gimes differentiated by the dimensionless parameter a
5 (b1/2 2 b2)/(Ldn2). For small a, the behavior is
dominated by the GVM term, and the GVD term causes
some broadening and asymmetry of the tuning curve.
The width of the tuning curve DVg [defined as the full
width at half-maximum (FWHM) of the square of d̂(V)
given by Eq. (5.5)] is obtained, to second order in a, as

DVg '
5.57

Ludnu
~1 1 3.87a2!. (5.8)

Figure 1(a) shows the tuning curves ud̂u2 as functions of
normalized frequency VLdn for several values of a. In
principle, when the grating k-vector is selected as K0
5 Dk0 (QPM condition) the tuning curve as given by Eqs.
(5.5) and (5.7) always has two peaks; one is at V 5 0, and
the second is at V 5 22dn/(b1/2 2 b2). For small a,
however, the second peak is far from the first, and typi-
cally its formally calculated spectral position is not at a
frequency for which the Taylor expansion, Eq. (5.7), is
valid.

When a increases, the second peak approaches the first
one until they ultimately merge. The cross over between
these two regimes occurs at uau ' 0.18. For large a, the

Fig. 1. Normalized cw tuning curves, ud̂u2, for a uniform grating
in the presence of GVD for (a) small and (b) large values of a
5 (b1/2 2 b2)/(Ldn2).
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shape of the tuning curve is dominated by the GVD term,
and its width is generally much broader than that in the
small-a regime, leading to what is well known from the
literature as wavelength-noncritical phase matching.26,27

To first order in 1/a, DVg in this regime is obtained as

DVg '
4.72

ALub1/2 2 b2u
S 1 1

0.090

a
D . (5.9)

Figure 1(b) shows the tuning curves ud̂u2 as functions of
normalized frequency VALub1/2 2 b2u for several values
of 1/a.

6. LINEARLY CHIRPED GRATING AS A
PULSE COMPRESSOR IN THE PRESENCE OF
GROUP-VELOCITY DISPERSION AT THE
SECOND HARMONIC
Let us consider a transform-limited FH Gaussian pulse
with carrier frequency v1, 1/e intensity half-width t0 ,
and amplitude E0 ; its time-domain envelope is then

B1~t ! 5 E0 expS 2
t2

2t0
2D . (6.1)

The frequency-domain envelope for such a pulse is then
obtained from Eqs. (4.1) and (4.2) as

Â1~V! 5
1

A2p
E0t0 expS 2

1

2
t0

2V 2D . (6.2)

If this pulse is stretched in a linear delay line with GVD
of C1 , it becomes linearly chirped; i.e., it acquires a
quadratic-in-V phase, as can be obtained from Eq. (6.2)
through Eq. (4.7):

Â1~V! 5
1

A2p
E0t0 expF2

1

2
~t 0

2 1 iC1!V2G . (6.3)

The time-domain envelope of the chirped pulse is ob-
tained by means of the inverse Fourier transform of Eq.
(6.3) as

B1~t ! 5 E0

t0

At 0
2 1 iC1

expF2
t2

2~t 0
2 1 iC1!

G . (6.4)

The results of Eqs. (6.3) and (6.4) are well known from the
literature.4,6

In Refs. 18 and 19 it was shown that, when GVD and
higher-order dispersion at both the FH and the SH are
negligible, the SH pulse generated in a linearly chirped
grating has an additional linear chirp, relative to the in-
put FH. More precisely, we considered a grating whose
nonlinear coefficient distribution is given by

d~z ! 5 uduexpF iK0S z 2
L

2 D
1 iDgS z 2

L

2 D 2GrectS z

L
2

1

2 D , (6.5)

where Dg is the grating chirp. The k-vector for this grat-
ing is obtained from Eq. (3.2) as
K~z ! 5 K0 1 2DgS z 2
L

2 D , (6.6)

which has a linear dependence on z.
The transfer function for this grating over the pulse

bandwidth was obtained in Refs. 18 and 19 as

D̂0~V! 5 guduA p

Dg
expS 2i

dn2V2

4Dg
D , (6.7)

as long as the grating length is selected to be long enough.
D̂0(V) has a quadratic-in-V phase and hence imposes an
additional linear chirp of dn2/2Dg on the SH, regardless of
the shape of the input FH.

One obtains the necessary condition on the grating
length such that the transfer function is accurately repre-
sented by Eq. (6.7) by noting that, for finite L, the ampli-
tude of the transfer function has a characteristic top-hat
profile, whose bandwidth DVg is obtained through the re-
quirement that the k-vectors at the input and output of
the grating be appropriate for phase matching (in the cw
sense) of the 6DVg/2 frequency components, i.e.,
uDVgdnu 5 uK(L) 2 K(0)u 5 2uDguL. The phase of the
transfer function over the range uVu < DVg/2 is still accu-
rately represented by Eq. (6.7). If the grating length is
selected such that DVg 5 6/t0 , then the SH pulse broad-
ening due to the spectral truncation of the frequency com-
ponents outside the uVu < DVg/2 range will be less than
10% (Ref. 19). Hence one obtains the condition for the
necessary grating length as

L 5 U 3dn

Dgt0
U. (6.8)

If the input FH is a linearly chirped Gaussian pulse of
the form of Eq. (6.3), and the grating chirp is selected as

Dg 5 2
dn2

C1
, (6.9)

then from Eqs. (4.15), (4.16), and (6.7) we find that the
generated SH will be transform limited.18,19

Since the GVD coefficient at the SH is typically several
times larger than that at the FH (see Section 10), it is in-
structive to see how well a linearly chirped grating will
perform as a compressor for the case in which a small
amount of GVD at the SH is present but GVD at the FH is
still negligible. The derivation of the proper grating
function for compression when GVD at both SH and FH is
present is given in Sections 7 and 8, where we find that
when significant GVD at either SH or FH, or both, is
present, the required grating has a more complicated,
other than linear, chirp.

The transfer function for the linearly chirped grating of
the form of Eq. (6.5) in the presence of GVD at the SH is
obtained from Eqs. (4.12) and (4.17) as

D̂2 5 guduA p

Dg
expF i

1

4
b2LV2 2 i

~dnV 2 b2V2/2!2

4Dg
G .

(6.10)
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As is apparent from Eq. (6.10), the transfer function
D̂2(V) for a linearly chirped grating in the presence of
GVD at the SH has not only quadratic but also cubic and
quartic phase terms. For a Gaussian linearly chirped FH
pulse of the form of Eq. (6.3), we obtain the Fourier trans-
form of the output SH time-domain envelope by substitut-
ing Eq. (6.10) into Eq. (4.18) and using Eqs. (4.1) and
(4.2):

B̂2~L, V! } expF2
1

4
t0

2V2 2
i

4 S C1 1 b2L 1
dn2

Dg
DV2

1
i

4

dnb2

Dg
V3 2

i

16

b2
2

Dg
V4G . (6.11)

As can be seen from relation (6.11), when b2 Þ 0, regard-
less of the choice of grating chirp Dg , the SH pulse gen-
erated in a linearly chirped grating will always have some
uncompensated phase; i.e., this pulse will not be trans-
form limited. We can set to zero the quadratic-in-V
phase factor in relation (6.11) by selecting the grating
chirp as

Dg 5 2
dn2

C1 1 b2L
. (6.12)

The remaining V3- and V4-phase terms will lead to un-
compensated SH pulse broadening. Equation (6.12) can
be inverted to yield the FH chirp needed to generate a SH
with zero quadratic phase in a grating with given Dg :

C1 5 2
dn2

Dg
2 b2L, (6.13)

or, if the grating length is selected according to Eq. (6.8),

C1 5 2
dn2

Dg
S 1 1

3b2

dnt0
D . (6.14)

So inclusion of GVD at the SH leads to a shift of the op-
timum FH chirp for compression in a grating with given
Dg , as well as to some broadening of the SH (as compared
with the non-GVD case), owing to the V3- and V4-phase
terms. Elimination of these terms requires a nonlinearly
chirped QPM grating, as discussed in Sections 7 and 8.

We numerically calculated the temporal profile of the
SH pulse by using the inverse Fourier transform of Eq.
(6.11) and evaluated its 1/e intensity full width 2t2 . Fig-
ure 2 shows the dependence of the normalized SH pulse
length t2 /t0 as a function of normalized FH chirp C1 /t0

2

for several values of normalized GVD coefficient at the
SH, b2 /dnt0 . A normalized grating chirp Dg(t0 /dn)2

5 20.1 is assumed. With increasing b2 the optimum
FH chirp shifts from its value for b2 5 0, as predicted by
Eq. (6.14), and the minimum SH pulse length increases as
the contribution of the V3- and V4-phase terms in rela-
tion (6.11) increases with b2 . We also note that there is
a sizable range of the FH chirp, DC1 , over which the SH
pulse length is relatively constant. When C1 is slightly
detuned from its optimum value [given by Eq. (6.14)], the
SH envelope has nonzero quadratic phase, which, how-
ever, does not contribute to significant pulse broadening
until it is larger than the contribution of the V3- and
V4-phase terms. This range is estimated as
DC1 ' 6Udn2

Dg

b2

dnt0
U, (6.15)

which is in agreement with the results shown in Fig. 2.
We also note that jumps in the SH pulse length, which
are apparent for larger values of b2 , are due to the fact
that the V3-phase term in relation (6.11) leads to the
ripples in the pulse shape4,6 and consequently causes the
stepwise increase in the pulse length, which is evaluated
at the constant level of 1/e.

To quantify the amount of pulse broadening that is due
to the V3- and V4-phase terms in relation (6.11) we cal-
culated the SH pulse length under the assumption that
the FH chirp is selected according to Eq. (6.14) to compen-
sate for the quadratic phase. We are interested in the re-
gime in which the broadening caused by b2 is relatively
small. In this regime the nonquadratic phase is domi-
nated by the cubic term in relation (6.11), and we neglect
the contribution of the V4-phase term. We calculated the
normalized SH 1/e intensity full width 2t2 , as shown in
Fig. 3, where t2 /t0 is plotted as a function of

Fig. 2. Dependence of the normalized SH pulse length t2 /t0 as
a function of normalized FH chirp C1 /t0

2 for several values of
normalized GVD coefficient at the SH, b2 /dnt0 . A linearly
chirped grating with length as given by Eq. (6.8) and with a nor-
malized chirp Dg(t0 /dn)2 5 20.1 is assumed.

Fig. 3. Effect of uncompensated cubic phase on the length of the
SH pulse generated in a linearly chirped grating in the presence
of GVD at the SH. The normalized SH pulse length t2 /t0 ob-
tained from relation (6.11) when the FH chirp is selected accord-
ing to Eq. (6.14) is plotted as a function of
(b2 /dnt0)/@Dg(t0 /dn)2#.
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(b2 /dnt0)/@Dg(t0 /dn)2#. We can see that the SH pulse
length exceeds that of the FH when such normalized b2
exceeds ;1.

7. ENGINEERING OF THE GRATING
k-VECTOR FOR ARBITRARY PULSE
PHASES IN THE PRESENCE OF
ARBITRARY DISPERSION
As was pointed out in Section 4, the advantage of the
transfer function relations of Eqs. (4.15) and (4.18) is that
they trivially enable one to design the grating function
d(z) necessary to perform the desired pulse shaping
transformation for arbitrary pulse shapes. However, if
the GVD at the FH becomes significant, one has to use
Eq. (4.8), which does not provide a ready way for such a
design of d(z). In this section, by assuming that the con-
version is localized at a point and using an intuitive
frequency-domain analysis, we develop a procedure, valid
for arbitrary material dispersion, for the design of the
grating k-vector necessary to compensate for arbitrary
FH phase to generate a SH pulse with a desired phase
distribution. Strictly speaking, the conversion is never
localized at a point but is always spread over a range of
grating k-vectors, the effect of which can accurately be
handled in strongly chirped gratings by the method of sta-
tionary phase, which provides mathematical justification
for the heuristic approach. The results obtained in this
section agree with the exact calculations for a particular
case of Gaussian pulses and no dispersion beyond GVD,
presented in Section 8, as well as with numerical model-
ing, presented in Section 9.

The evolution of the phase of a general FH pulse when
it propagates through the QPM grating shall be consid-
ered first. Since the conversion is driven by the nonlin-
ear polarization, which is proportional to the square of
the FH in the time domain (or to the FH self-convolution
in the frequency domain), we derive a propagation law,
for the phase of the nonlinear polarization, that in gen-
eral is different from that of the FH. A particular fre-
quency component of the nonlinear polarization accumu-
lates a certain phase shift in traveling from the input of
the grating to a location where the conversion of this com-
ponent is phase matched, and then, after the conversion,
the generated SH component travels toward the output of
the grating, accumulating a certain phase shift, as gov-
erned by the SH phase propagation law. By specifying
the desired phase of the SH pulse as a function of fre-
quency at the output, we obtain the grating locations
where different components have to be converted and sub-
sequently derive the necessary grating phase distribu-
tion.

Consider a FH pulse with spectrum Ê1(z 5 0, v) input
to the QPM grating. This pulse propagates through the
dispersive medium according to Eq. (4.7) as

Ê1~z, v! 5 Ê1~z 5 0, v!exp@2ik~v!z#. (7.1)

Hence in the frequency domain the dispersive propaga-
tion over distance z results in the position-dependent
phase distribution of different frequency components,
FFH :
FFH 5 F1~V1! 2 k~v1 1 V1!z

5 F1 2 k1z 2 ~z/u1!V1 2 k̃1~V1!z, (7.2)

where the FH pulse phase at the input to the grating is
F1(V1) 5 /@Ê1(0, v1 1 V1)#, /@x# denotes the phase of
a complex quantity x, and k̃ i(V i) contains GVD and
higher-order terms in the Taylor expansion of k(v i
1 V i):

k̃ i~V i! 5 (
n52

` 1

n! Fdnk~v!

dvn GU
v5vi

V i
n . (7.3)

The SH conversion is driven by the nonlinear
polarization, whose spectrum is proportional to the
product of the nonlinear coefficient and a self-convolution
of the FH pulse spectrum, i.e., P̂NL(z, v)
5 «0d(z)*2`

1` Ê1(z, v8)Ê1(z, v 2 v8)dv8, Ref. 28, and
hence can be written from Eqs. (7.1) and (7.2) as

P̂NL~z, V! 5 «0d~z !exp@22ik1z 2 i~z/u1!V#p̂~z, V!,
(7.4)

where p̂ is

p̂~z, V! 5 E
2`

1`

Ê1~0, v1 1 V8!Ê1~0, v1 1 V 2 V8!

3 exp@2ik̃1~V8!z 2 ik̃1~V 2 V8!z#dV8,

(7.5)

with V8 5 v8 2 v1 . We notice that, in the absence of
GVD and higher-order material dispersion (k̃1 5 0), p̂ is
just the z-invariant self-convolution of the input FH field,
so the nonlinear polarization propagates with the same
group velocity as the FH itself, and hence the propagation
laws for the phases of P̂NL and Ê1 are the same. How-
ever, when GVD is present the rates at which P̂NL and Ê1

disperse are in general different. Moreover, for P̂NL the
phase propagation law depends on the shape of the input
FH pulse, as is apparent from Eq. (7.5), which has to be
known if one is to obtain a simple algebraic form similar
to Eq. (7.2). This distinction between P̂NL and Ê1 is what
makes the problem complicated.

Let us consider a particular frequency component V0 of
the nonlinear polarization and assume that it converts to
the SH at a location z0 in the QPM grating. By traveling
from z 5 0 to z 5 z0 this component accumulates a par-
ticular phase shift FP , which is obtained from Eqs. (7.4)
and (7.5) as

FP 5 F~z0! 2 2k1z0 2 ~z0 /u1!V0 1 /@ p̂~z0 , V0!#,
(7.6)

where F(z0) is the phase of d(z) at the location z 5 z0
[see Eq. (3.1)]. After conversion at z 5 z0 this frequency
component propagates as a SH component, hence accu-
mulating a certain phase, which is obtained, similarly to
Eq. (7.2), as

FSH 5 2k~v2 1 V0!~L 2 z0!

5 2k2~L 2 z0! 2 @~L 2 z0!/u2#V0

2 k̃2~V0!~L 2 z0!. (7.7)
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The total phase that this V0 component has at the output
of the grating, Ftotal , is the sum of FP and FSH and is ob-
tained from Eqs. (7.6) and (7.7) as

Ftotal~z0 , V0!

5 F~z0! 2 Dk0z0 2 k2L 2 dnz0V0 2 ~L/u2!V0

1 /@ p̂~z0 , V0!# 2 k̃2~V0!~L 2 z0!. (7.8)

The grating has to be designed such that this total
phase Ftotal is equal to the desired phase of the SH,
F2(V0), which is to be generated at the output of the
grating; i.e., we find F(z0) such that F2(V0)
5 Ftotal(V0). To specify the location z0 at which the V0
component must be converted, we require that the conver-
sion location be selected such that the group delay, which
can be obtained by differentiation of Ftotal with respect to
V0 , must equal the desired group delay, ]F2 /]V0 , for all
V0 , i.e., ]F2 /]V0 2 ]Ftotal /]V0 5 0. Using Eq. (7.8),
we obtain

]

]V0
F2~V0! 1 dnz0 1

L

u2
2

]

]V0
/@ p̂~z0 , V0!#

1 ~L 2 z0!
]

]V0
k̃2~V0! 5 0. (7.9)

Solving Eq. (7.9) gives the functional dependence V0
5 V0(z0), which specifies the component V0 that is to be
converted at the location z0 . Substituting V0(z0) into
Eq. (7.8) and setting Ftotal(V0) 5 F2(V0) allows elimina-
tion of V0 and yields the necessary grating phase F
5 F(z0).

The intuitive frequency-domain grating design proce-
dure described above can be put into more mathemati-
cally rigorous form by the method of stationary phase for
asymptotic evaluation of integrals with rapidly oscillating
integrands.29,30 The general result for the output SH
field, valid for arbitrary dispersion and pulse shapes, Eqs.
(4.8)–(4.10), can be rewritten as

Ê2~L, v2 1 V! 5 2ig exp@2ik~v2 1 V!L#

3 E
2`

1`

ud~z !uexp@iF~z !#p̂~z, V!

3 exp~2iDk0z 2 idnVz !

3 exp@ik̃2~V!z#dz, (7.10)

where p̂(z,V) is defined by Eq. (7.5) and k̃2(V) is defined
by Eq. (7.3). One obtains the leading behavior of the in-
tegral in Eq. (7.10) by the method of stationary phase by
realizing that the main contribution to the integral comes
from the region around point z0 , where the phase varia-
tion of the integrand is slowest, i.e., F8(z0)
1 /@ p̂(z0 , V)# 2 Dk0 2 dnV 1 k̃2(V) 5 0. Applying
the standard stationary phase result29,30 yields

Ê2~L, v2 1 V! 5 2igud~z0!uup̂~z0 , V!u

3 X 2p

uF9~z0! 1 $/@ p̂~z0 , V!#%9u
C1/2

3 exp@iFtotal~z0 , V!#, (7.11)
where Ftotal(z0 , V) is the same as defined by Eq. (7.8).
We note that the conversion efficiency of different fre-
quency components is affected both by the spreading of
the FH, which is due to GVD and higher-order dispersion,
as represented by the p̂(z0 , V) factor in Eq. (7.11), and by
the second derivative of the necessary phase of the grat-
ing.

Since the expression for the total phase in Eq. (7.11) is
the same as that of the heuristic point conversion picture,
Eq. (7.8), we can also view this result as a first-order jus-
tification for that picture and would of course find the
same result for the required grating phase F(z), as in Eq.
(7.9). The rigorous estimation of the accuracy of the sta-
tionary phase approximation of the integral in Eq. (7.10)
with its leading behavior, Eq. (7.11), is complicated and
requires delicate estimation of integrals. In principle,
higher-order terms in the asymptotic expansion can be es-
timated by the method of steepest descent.29,30 The
physically intuitive condition for applicability of the sta-
tionary phase method is that the distance over which the
conversion is phase matched, as determined by the in-
verse of the factor F9(z) [ K8(z) in Eq. (7.11), must be
much smaller than the grating length designed to accom-
modate conversion of all frequency components, or, in
other words, the required grating must be strongly
chirped, K8(z)L2 @ 1 for all z P @0, L#.

As a particular example of the application of this grat-
ing design procedure we consider generation of a linearly
chirped SH pulse from a Gaussian linearly chirped FH
pulse of the form of Eq. (6.3) for the case in which disper-
sion terms beyond GVD can be neglected, i.e., k̃ i(V)
5 (1/2)b iV

2. In this case Eq. (7.5) can be integrated
analytically in closed form, resulting in

FP 5 F~z0!2
1

2
arctanS C1 1 b1z0

t0
2 D

22k1z0 2
z0

u1
V0 2

1

4
~C1 1 b1z0!V0

2. (7.12)

The phase that V0 accumulates by propagating as a SH
component is obtained from Eq. (7.7) as

FSH 5 2k2~L 2 z0! 2
L 2 z0

u2
V0 2

1

2
b2V0

2~L 2 z0!.

(7.13)

The desired phase of the SH pulse at the output is

F2 5 2S L

u1
2 DT DV0 2

1

2
C2V0

2, (7.14)

which has a chirp of C2 and is delayed by DT relative to
the FH pulse. We note that the grating length L and the
delay DT, treated here as parameters, have to be selected
properly in the manner described in Section 8.

Substituting Eqs. (7.12) and (7.13) into Eq. (7.8) and
differentiating Eq. (7.9), we obtain an implicit relation for
the location z0 at which frequency component V0 should
be converted:

V0 5 2
dn~L 2 z0! 2 DT

C~z0!
, (7.15)
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where

C~z ! 5 C1 2 2C2 1 ~b1 2 2b2!z 1 2b2L. (7.16)

The grating phase is then obtained from Eq. (7.8) with
Eq. (7.15) as

F~z0! 5
1

2
arctanS C1 1 b1z0

t0
2 D 1 Dk0z0

2
@dn~L 2 z0! 2 DT#2

C~z0!
, (7.17)

where we neglected a constant phase term.
The result of the stationary phase method, Eq. (7.11),

also predicts amplitudes of the different spectral compo-
nents of the generated SH pulse. Using Eq. (7.11) with
the result of Eq. (7.17) and analytically evaluating
p̂(z, V), Eq. (7.5), for the case of Gaussian pulses and
negligible dispersion beyond GVD, we obtain the neces-
sary modulation of the grating amplitude for uniform con-
version of different components:

ud~z !u } F 1

puC~z !u

t1~z !

t0
G1/2Udn

1 ~b1 2 2b2!
dn~L 2 z ! 2 DT

C~z !
U, (7.18)

where the z-dependent length of the FH pulse is

t1~z ! 5 $t0
2 1 @C1~z !/t0#2%1/2. (7.19)

The results obtained for the required grating phase, Eq.
(7.17), and grating amplitude modulation, relation (7.18),
are exactly the same as the ones obtained from the rigor-
ous analysis presented in Section 8 for the particular case
of Gaussian pulses and negligible dispersion beyond GVD
[see Eqs. (8.10) and (8.11)].

8. CHIRPED GRATING COMPRESSOR IN
THE PRESENCE OF GROUP-VELOCITY
DISPERSION AT BOTH THE SECOND
HARMONIC AND THE FIRST HARMONIC
In this section we consider a restricted class of linearly
chirped Gaussian FH pulses and neglect dispersion be-
yond GVD at the FH, i.e., dk9(V, V8) 5 0 in Eq. (4.13).
We find that in this case one can integrate, in a closed
form, the integral expression for the output SH envelope,
Eq. (4.8), to obtain a relation similar to the transfer func-
tion relations of Eqs. (4.15) and (4.18). Furthermore, ne-
glecting the dispersion terms higher than GVD at the SH,
i.e., dk8(V) 5 0 in Eq. (4.12), we derive an analytical ex-
pression for d(z) that is necessary for the generation of a
linearly chirped SH pulse. The result for the grating
phase is the same as that of Section 7, Eq. (7.17); how-
ever, in the derivation of this section we do not make any
mathematical approximations.

Assuming an input linearly chirped Gaussian FH pulse
with a frequency-domain envelope as given by Eq. (6.3),
substituting it into Eqs. (4.8)–(4.13), and carrying out in-
tegration over V8, we obtain
Â2~L, V! 5 2igA1
2̂~V!E

2`

1`

dzd̃~z !exp@2im~V!z#, (8.1)

where we have defined

m~V! 5 Dk8~V! 2
1

4
b1V2

5 Dk0 1 dnV 1
1

2 S 1

2
b1 2 b2DV2 1 dk8~V!,

(8.2)

d̃~z ! 5 d~z !F t0
2 1 iC1

t0
2 1 iC1~z !

G 1/2

(8.3)

with the z-dependent chirp of the FH pulse being defined
as

C1~z ! 5 C1 1 b1z, (8.4)

where C1 is the chirp of the FH pulse at the input to
the grating [see Eq. (6.3)]. dk8(V) is as defined in Eq.
(4.12), and A1

2̂(V) is a self-convolution [Eq. (4.16)] of the
Gaussian FH pulse envelope, Eq. (6.3).

The integral in Eq. (8.1) is proportional to the Fourier
transform of d̃(z) with the transform variable m. Equa-
tion (8.1) does not have the form of a transfer function re-
lation, since d̃(z) depends on the parameters of the input
FH pulse, viz., its initial chirp and pulse length. Com-
paring the transfer function relation, Eq. (4.18), with Eq.
(8.1), we note that the latter is valid for a restricted class
of FH pulses, i.e., linearly chirped Gaussians, not arbi-
trary FH pulses, but that the dispersion at the FH is in-
cluded up to the GVD in Eq. (8.1), whereas Eq. (4.18) was
obtained when we neglected GVD and higher-order dis-
persion at the FH. We also recall that both Eqs. (8.1)
and (4.18) are valid for arbitrary dispersion at the SH.

The grating function d(z) necessary to generate a de-
sired SH pulse from a given Gaussian FH pulse is ob-
tained from Eq. (8.1) by use of the inverse Fourier trans-
form as

d~z ! 5 i
1

2pg
F t0

2 1 iC1~z !

t0
2 1 iC1

G 1/2

3 E
2`

1`

dm
Â2~L, V!

A1
2̂~V!

exp@im~V!z#, (8.5)

where V is considered to be a function of m as can be ob-
tained by inversion of Eq. (8.2). We stress again that in
Eq. (8.5) the FH is a linearly chirped Gaussian pulse, not
an arbitrary pulse; however, we did not make any as-
sumptions about the shape or chirp of the SH pulse,
which can be arbitrary. Hence Eq. (8.5) gives an explicit
prescription for the design of a QPM grating for the gen-
eration of a shaped SH pulse from a Gaussian FH pulse.

The integral in Eq. (8.5) can be evaluated analytically
for a technologically important particular case of pulse
shaping: generation of a Gaussian linearly chirped SH
pulse (or transform-limited SH pulse, as a special case
when chirp is equal to zero), when dispersion beyond
GVD at not only the FH but also the SH can be neglected,
i.e., dk8(V) 5 0 in Eq. (4.12). The Fourier transform of
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the time-domain envelope of an output Gaussian SH
pulse of width t2 , chirp C2 , and amplitude E20 is given by

B̂2~L, V! 5
1

A2p
E20t2

3 expF2
1

2
~t2

2 1 iC2!V2 2 iS L

u1
2 DT DVG .

(8.6)

The linear-in-V factor in Eq. (8.6) indicates that the de-
sired SH pulse is delayed from the FH pulse at the output
of the grating by DT, as can be verified by comparison of
the Fourier transform of the output time-domain envelope
for the Gaussian FH pulse. The frequency-domain enve-
lope for the SH pulse is obtained from Eq. (8.6) as

Â2~L, V! 5
1

A2p
E20t2 expF2

1

2
~t2

2 1 iC2 2 ib2L !V2

2 i~dnL 2 DT !VG . (8.7)

The desired value of the delay DT will be specified below.
Since the QPM grating acts like a filter, and not like an

amplifier, in the frequency domain, it cannot provide sig-
nificant bandwidth enhancement without significant at-
tenuation of the central spectral components. Hence we
choose the spectral width of the SH to be the same as that
of A1

2̂; from Eqs. (4.16), (6.3), and (8.7) we obtain

t2 5 t0 /A2. (8.8)

We also note that the amplitude of the SH pulse, E20 ,
cannot be arbitrarily high since its upper bound is set by
the available nonlinearity. The maximum possible value
for E20 will be obtained below [see Eq. (8.19)].

Substituting Eqs. (4.16), (6.3), (8.7), and (8.8) into Eq.
(8.5) and integrating, we obtain the desired grating func-
tion as

d~z ! 5 ud~z !uexp@iF~z !#, (8.9)

where the z-dependent phase of the grating, F(z), is

F~z ! 5
1

2
arctanFC1~z !

t0
2 G 1 Dk0z 2

@dn~L 2 z ! 2 DT#2

C~z !
(8.10)

and the z-dependent grating amplitude is

ud~z !u 5
1

g

E20

E0
2 F 1

puC~z !u

t1~z !

t0
G1/2Udn

1 ~b1 2 2b2!
dn~L 2 z ! 2 DT

C~z !
U, (8.11)

where the z-dependent length of the FH pulse, t1(z), is as
defined by Eq. (7.19) and C(z) is as defined by Eq. (7.16).

The z-dependent k-vector of the grating is the deriva-
tive of the grating phase F(z) given by Eq. (8.10):
K~z ! 5
1

2
b1

1

t1
2~z !

1 Dk0 1 2dn
dn~L 2 z ! 2 DT

C~z !

1 ~b1 2 2b2!
@dn~L 2 z ! 2 DT#2

C~z !2 . (8.12)

This analysis and the resulting expressions are valid
for the case in which the GVD is considered to be a
correction to the GVM; more precisely, it works when
Lgv ! Lb1 ,Lb2 . Otherwise, the GVD-induced pulse
spreading is comparable with or greater than pulse walk-
off. It turns out that, for common QPM ferroelectrics, the
condition Lgv ! Lb1 , Lb2 is satisfied for pulses longer
than ;5 fs at wavelengths shorter than the group-velocity
degeneracy points, l1 , 2 mm (see Section 10).

Note that we have not yet specified the time delay DT
between the FH and the SH pulses at the output of the
grating, as well as the grating length L. These param-
eters have to be selected properly to avoid bandwidth
truncation; i.e., the grating bandwidth DVg has to be
equal to 6/t0 . In a manner similar to the selection of the
appropriate length of a linearly chirped grating in the
negligible-GVD case, described in Section 6, we require
that DT and L, which appear as parameters in Eq. (8.12),
be chosen such that the grating k-vectors at the input,
K(0), and at the output to the grating, K(L), phase
match (in the cw sense) frequencies 6DVg/2. Explicitly,
the conditions are obtained from Eq. (5.7) as

K~0 ! 5 Dk0 6 dn
DVg

2
1

1

2 S 1

2
b1 2 b2D S DVg

2 D 2

, (8.13)

K~L ! 5 Dk0 7 dn
DVg

2
1

1

2 S 1

2
b1 2 b2D S DVg

2 D 2

. (8.14)

From Eq. (8.12), K(L) . K(0) when C1 2 2C2 , 0, and
K(L) , K(0) when C1 2 2C2 . 0. Hence in Eqs. (8.13)
and (8.14) the upper sign is chosen when (C1 2 2C2)dn
. 0 and the lower sign is chosen otherwise.

We obtain the required delay DT as a function of crys-
tal length L and pulse parameters by substituting Eq.
(8.12) into the set of Eqs. (8.13) and (8.14) and eliminat-
ing DVg :

DT 5
1

2
dnL

C1 2 2C2 1 b1L

C1 2 2C2 1 ~b1 1 2b2!L/2
. (8.15)

In the derivation of this expression for DT we have ne-
glected the first term in the expression for K(z), Eq.
(8.12), since its contribution is small and its inclusion pro-
duces a much more complicated expression for DT. We
then obtain the required length of the grating L from Eq.
(8.13) by eliminating DVg 5 6/t0 and using Eq. (8.15) for
DT, as

L 5
3uC1 2 2C2u/t0

udnu 6 ~3/2!@~b1 1 2b2!/t0#
, (8.16)

where the plus sign in the denominator is chosen when
C1 2 2C2 , 0 and the minus sign is chosen otherwise.
Figure 4 shows the required grating length given by Eq.
(8.16) normalized to the grating length for the case in
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which b1 5 b2 5 0 as a function of (b1 1 2b2)/t0udnu.
The two branches correspond to different signs in the de-
nominator of Eq. (8.16).

Figure 5(a) shows the normalized grating k-vector nec-
essary to generate a compressed SH pulse (C2 5 0) from
a Gaussian FH pulse with the normalized chirp C1 /t0

2

5 10 for several values of the normalized GVD coeffi-
cients b1 /(t0dn) and b2 /(t0dn). When the GVD is neg-
ligible at both the SH and the FH, i.e., b1 5 b2 5 0, then

Fig. 4. Required length of a chirped grating, as given by Eq.
(8.16), normalized to the grating length for the case b1 5 b2
5 0, as a function of (b1 1 2b2)/t0udnu. The two branches cor-
respond to the two signs in the denominator of Eq. (8.16).

Fig. 5. (a) Normalized grating k-vector, @K(z) 2 Dk0#(t0 /dn),
as obtained with Eq. (8.12), and (b) normalized grating ampli-
tude, ud(z)u, as obtained with Eq. (8.11). Both are plotted as
functions of normalized position in the grating, z/L, for several
representative pairs of the normalized GVD coefficients,
(b1 /dnt0 , b2 /dnt0): solid curve (0, 0); dashed curve, (0.02,
0.10); dotted curve, (0.05, 0.15); dotted–dashed curve, (0.10,
0.25).
from Eq. (8.15) the delay is DT 5 dnL/2 and from Eq.
(8.16) the grating length is L 5 u3C1 /t0dnu, in agreement
with Eqs. (6.8) and (6.9). The grating k-vector as ob-
tained from Eq. (8.12) is linear with z, K(z) 5 Dk0
2 2(dn2/C1)(z 2 L/2), in agreement with previously de-
rived results, Eqs. (6.5)–(6.9). As is apparent from Fig.
5(a), with increasing b1 and b2 , K(z) deviates from the
linear behavior and acquires significant curvature.

In the expression for the modulated amplitude of the
grating, Eq. (8.11), the amplitude of the generated SH
wave, E20 , is not an independent parameter because the
upper bound on ud(z)u is set by the available nonlinearity,
ud(z)u < (2/pm)deff (see Section 3). Under the condition
Lgv ! Lb1 , Lb2 , the grating amplitude, as given by Eq.
(8.11), is a monotonic function over the grating length,
and hence it achieves its maximum value of (2/pm)deff at
either z 5 0 or z 5 L. Equation (8.11) can then be re-
written as

ud~z !u 5
2

pm

deff

M F t0t1~z !

uC~z !u G1/2 1

udnu
Udn

1 ~b1 2 2b2!
dn~L 2 z ! 2 DT

C~z !
U, (8.17)

where the scaling constant M is

M 5 maxH F t0t1~0 !

uC~0 !u G1/2U 2C~L !

C~0 ! 1 C~L !
U,

Ft0t1~L !

uC~L !u G1/2U 2C~0 !

C~0 ! 1 C~L !
UJ . (8.18)

The amplitude of the generated SH pulse, E20 , is then ob-
tained as

E20 5
2

Apm

deff

M
LgvgE0

2. (8.19)

Figure 5(b) shows ud(z)u normalized to (2/pm)deff for
the same set of the normalized GVD coefficients
b1 /(t0dn) and b2 /(t0dn) as in Fig. 5(a). We note that
ud(z)u increases as the curvature of K(z) increases, in
agreement with the result of the stationary phase analy-
sis of Section 7, Eq. (7.11). Since the conversion of a par-
ticular frequency component occurs over a finite range of
grating k-vectors and since dK(z)/dz is not constant for
nonlinearly chirped gratings, the distance over which a
particular frequency component is phase matched also
varies, leading to different efficiencies for different fre-
quency components, which must be compensated by the
modulation of the grating amplitude. The GVD-induced
spreading of the FH pulse, and hence the reduction of the
peak power, are other effects that require compensation
by the grating amplitude; both are accounted for in Eq.
(8.17).

Equations (8.9), (8.10), and (8.15)–(8.18) completely
specify the grating function that is necessary to generate
a Gaussian SH pulse with a desired linear chirp from a
Gaussian FH pulse with a given chirp, valid for up to the
GVD dispersion terms at both the FH and the SH.
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9. NUMERICAL MODELING
From the theoretical treatment presented in Sections 7
and 8 it follows that in the presence of GVD and/or
higher-order dispersion the amplitude of a grating re-
quired for pulse compression should be modulated to
achieve a uniform conversion across the pulse spectrum.
From a practical standpoint, it might be difficult to con-
trol the local duty cycle precisely enough to exactly repro-
duce the desired amplitude modulation, as given by Eq.
(8.17) for the case of Gaussian pulses. We expect that, if
a grating with no amplitude modulation is used, it would
cause the shape of the SH spectrum to deviate from the
assumed Gaussian form but should not introduce signifi-
cant uncompensated phase on the SH pulse. Though in-
tuitively reasonable, this assertion must be tested nu-
merically. Another intuitive consideration is that, even
though the necessary grating function for compression in
the presence of GVD was derived in Section 8 under the
assumption of Gaussian pulses, the distribution of the
k-vector that is primarily responsible for phase compen-
sation of the chirped FH pulse should also work for other
pulse shapes, as long as the pulse spectrum is smooth.
This insensitivity of the phase to the pulse shape has
been noted before in the literature31 and also appears
from the stationary phase analysis results, Eqs. (7.11)
and (7.8). The actual pulse shape enters the grating
phase derivation procedure through the phase of p̂(z, V),
defined by the integral expression of Eq. (7.5); for smooth
pulse shapes, /p̂(z, V) is relatively insensitive to the ac-
tual pulse shape.

To address these issues as well as to test the results of
Section 7 in the presence of dispersion terms higher than
GVD, we simulate numerically the propagation of the
coupled FH and SH waves based on the time-domain ver-
sions of Eqs. (4.3) and (4.4). We use the symmetrical
split-step method6,8; the FFTW software library32,33 is
used to implement the fast-Fourier-transform routines.

To ascertain the quality of the generated SH pulses we
use several measures. First, the pulses are character-
ized by their temporal FWHM of the intensity, as is con-
ventional in the experimental literature. So far in this
paper we have used the 1/e intensity temporal half-width,
which is more convenient mathematically for Gaussian
pulses. To distinguish the two pulse length measures we
continue using notation t for the temporal 1/e half-width
and introduce notation Dt for the temporal FWHM. For
a Gaussian pulse, they are related to each other according
to Dt 5 2Aln 2t ' 1.66t.

The second pulse quality check that we perform is a
comparison of the generated SH pulse with the ideal
pulse, which would have been generated if the grating
had not introduced spectral truncation and had exactly
corrected the FH phase. We take the square of the input
stretched FH pulse, calculate its Fourier transform, flat-
ten the spectral phase, and use the inverse Fourier trans-
form to obtain the ideal SH pulse profile, B2

ideal(L, t):

B2
ideal~L, t ! 5 IFTuFT$@B1~t !#2%u, (9.1)

where FT and IFT denote the Fourier transform and the
inverse Fourier transform, respectively.
The third parameter that we calculate for the gener-
ated SH pulse is the pulse length, DtTL, of a transform-
limited pulse, B2

TL(L, t), which has the same spectral pro-
file as the generated SH pulse, but with a flat spectral
phase:

B2
TL~L, t ! 5 IFTuFT@B2~L, t !#u. (9.2)

Comparison of DtTL and Dt2 serves as a measure of how
well the grating compensates the FH phase, independent
of the amount of the spectral truncation that it intro-
duces.

As a model, in these simulations we consider genera-
tion of a compressed SH pulse (C2 5 0) by doubling a FH
pulse from a Ti:sapphire oscillator at a wavelength of 800
nm with pulse length of Dt0 5 10 fs (t0 5 6 fs), which
is subsequently stretched to have chirp C1 5 10t0

2.
The QPM grating is assumed to be fabricated on a lithium
tantalate substrate, which has a lower nonlinearity
than a more common ferroelectric for QPM, lithium
niobate, but a deeper UV absorption edge, so that the
two-photon absorption of the SH is of less concern. Also,
it appears that the short QPM periods of ;3.5 mm
required for doubling of 800 nm are easier to pole in
lithium tantalate.34 The dispersion parameters are cal-
culated from the Sellmeier data of Ref. 35 as Dk0
5 21.99 mm21, dn 5 21.49 ps/min, b1 5 305 fs2/mm,
and b2 5 1142 fs2/mm, and the normalized GVD coeffi-
cients are b1 /(t0dn) 5 234 3 1023 and b2 /(t0dn)
5 2127 3 1023. Note that, if one were to use a uniform
QPM grating on the lithium tantalate substrate to double
such short pulses, one would need to choose a grating
length of 8 mm to avoid significant pulse broadening. Us-
ing such a short length poses problems of handling the
crystal, and using confocal focusing to achieve high effi-
ciency, requiring focusing into spot size of 0.7 mm, is not
practical. These issues do not emerge for longer crystals
used with chirped pulses.

We numerically test the results of Section 8 for the case
in which GVD at both the SH and the FH is nonnegli-
gible. To separate the GVD effects from the higher-order
dispersion effects we first set to zero the material’s disper-
sion coefficients beyond GVD in the numerical propaga-
tion of the coupled fields. The effects of higher-order dis-
persion on the required grating function and the
generated SH pulse are considered at the end of this sec-
tion. The required grating length is obtained with Eq.
(8.16) as L 5 0.213 mm. Figure 6(a) (dashed curve)
shows the grating period L(z) 5 2p/K(z), as obtained
with Eq. (8.12). The required modulation of the grating
amplitude ud(z)u is obtained with Eq. (8.17) and is shown
in Fig. 6(b) (dashed curve).

For the Gaussian linearly chirped FH pulse, B1(t) as
defined by Eq. (6.4), the generated SH pulse profile,
B2(L, t), is shown in Fig. 7 (dashed curve). The pulse
length Dt2 5 7.7 fs. This is 9% broader than the ideal
SH pulse, B2

ideal(L, t), as calculated with Eq. (9.1) and as
shown in Fig. 7 (solid curve), which has a pulse width of
Dt2 5 Dt0 /A2 5 7.1 fs. This broadening results from
the spectral truncation that is due to the finite grating
length used. However, this spectral truncation does not
introduce significant uncompensated phase, as can be
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judged from Fig. 7(b); the calculation shows that Dt2 is
only 1.4% broader than DtTL.

The required grating amplitude modulation is 67%
[Fig. 6(b), dashed curve]. If instead a grating with a flat
amplitude [Fig. 6(b), solid curve] is used, the resulting
temporal profile of the compressed SH pulse is essentially
indistinguishable in shape from the one obtained with the
modulated grating amplitude, but the pulse has 2.7 times
more energy. When the grating with unmodulated am-
plitude is used different spectral components convert with
different efficiencies roughly linear with frequency, to
first order, causing a slight shift of the whole SH pulse in
time, but not changing the shape of the compressed pulse.
If it is desirable to generate a chirped SH pulse, the non-
uniformity of the conversion for different spectral compo-
nents in a grating with unmodulated amplitude would
have a more profound effect on the temporal shape of the
SH pulse. Note that this insensitivity of the pulse qual-
ity to the amplitude modulation of the grating also means
relatively high tolerance to QPM-grating fabrication er-
rors. The positions of the inverted domains are deter-
mined by the lithography mask and hence can be consid-
ered error free. Poling defects affect only the local duty
cycle of the grating and hence affect only the amplitude,

Fig. 6. (a) Distribution of the grating period L(z) for compres-
sion in lithium tantalate. The dashed curve represents a grat-
ing designed according to the prescription of Section 8 to account
for GVD at both the SH and the FH; the dotted–dashed curve, a
linearly chirped grating designed according to Section 6 [Eqs.
(6.6) and (6.12)] to account for GVD at the SH; the dotted curve,
a linearly chirped grating designed without accounting for the
GVD effects [Eqs. (6.6) and (6.9)]. (b) Distribution of the grating
amplitude for a grating designed to account for GVD at both the
SH and the FH [Eq. (8.11) (dashed curve)]. Also shown is the
unmodulated amplitude of the grating (solid curve).
but not the phase, of the Fourier component of the QPM
grating.10 Consequently, these errors do not lead to sub-
stantial pulse quality reduction. Of course, if several ad-
jacent domains are completely missing, this could signifi-
cantly affect the spectral content of the generated pulse.

It is instructive to see the extent to which the effects of
GVD influence the generated SH pulse if the grating used
is designed without accounting for GVD. In this case the
grating is linearly chirped, its k-vector being given by Eq.
(6.6), with the grating chirp calculated according to Eq.
(6.9) as Dg 5 6.17 3 103 mm22, as shown in Fig. 6(a)
(dotted curve). As can be seen, the grating function does
not differ much from the grating with GVD correction;
however, the SH pulse generated [as shown in Fig. 7 (dot-
ted curve)] is almost two times broader, Dt2 5 13.7 fs.
The phase of the pulse has substantial curvature, result-
ing in Dt2 being 1.79 times broader than DtTL. If the
grating chirp is selected according to Eq. (6.12) to com-
pensate for the quadratic contribution to the phase,
caused by the GVD at the SH [as shown in Fig. 6(a)
(dotted–dashed curve)], the generated SH pulse [Fig. 7
(dotted–dashed curve)] is less broad, Dt2 5 10.4 fs, but it
still has ripples on the leading edge and substantial phase

Fig. 7. (a) Intensities and (b) phases of the SH pulses obtained
from a Gaussian FH pulse by use of different gratings. The
dashed curve represents a grating designed to account for GVD
at both the SH and the FH according to prescription of Section 8;
the dotted–dashed curve, a grating designed to account for GVD
at the SH [Eqs. (6.6) and (6.12)]; the dotted curve, a grating de-
signed without accounting for the GVD effects [Eqs. (6.6) and
(6.9)]. Also shown is the ideal SH pulse that would have been
generated if the grating had not introduced spectral truncation
and exactly corrected the FH phase (solid curve). Note that
these results are obtained from the numerical simulations with
dispersion terms beyond GVD set to zero.
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variation across the pulse profile, resulting in Dt2 being
1.20 times broader than DtTL.

Since we have seen for the Gaussian pulses that the
grating amplitude modulation does not have a significant
effect on the phase of the generated pulse, it also seems
intuitively reasonable that the grating designed for lin-
early chirped Gaussian pulses should work well for other
pulse shapes, as long as the phase of the stretched pulse
is also predominantly quadratic. We test this assertion
by propagating FH pulses with a hyperbolic secant tem-
poral profile and with a super-Gaussian spectral profile
through a grating with flat amplitude distribution and
with the k-vector distribution as designed for a Gaussian
FH pulse, according to Eq. (8.12) [Fig. 6(a) (solid curve)]
and compare the results with pulses generated in grat-
ings designed according to the prescription of Section 7
for the particular pulse shape.

For a hyperbolic secant FH pulse, the temporal profile
before stretching is

B1~t ! 5 E0 sech~t/ts!, (9.3)

where ts 5 t0Aln 2/ln(1 1 A2) ' 0.945t0 is selected such
that its FWHM is equal to that of a Gaussian pulse with
1/e intensity half-width of t0 . The SH pulse generated in
a grating designed for a Gaussian pulse has length of
Dt2 5 9.0 fs, which is 6% broader than the ideal pulse
profile, as a result of spectral truncation. The phase is
essentially flat over the time range in which the pulse has
substantial intensity, resulting in 1.4% broadening rela-
tive to the transform limit. Calculation of the grating
k-vector according to the prescription of Section 7 for the
hyperbolic secant pulse gives a result almost indistin-
guishable from that obtained for a Gaussian pulse; conse-
quently, the SH pulses generated with these two gratings
are of the same quality.

The input FH pulse with a super-Gaussian spectral
profile is assumed to be of the form

B̂1~V1! 5 E0 expF2
~tsgV1!2m

2 G , (9.4)

where we have chosen m 5 5 and tsg 5 0.621t0 , with the
numerical factor being selected such that the temporal in-
tensity profile of the pulse whose spectrum is as given by
Eq. (9.4) has the same FWHM as a Gaussian pulse whose
1/e intensity half-width is t0 . The SH pulse generated in
a grating designed for a Gaussian pulse has length of
Dt2 5 6.0 fs, 8% broader than the length of the ideal
pulse. Comparison of B2(L, t) with B2

TL(L, t) shows that
Dt2 is only 1.1% broader than DtTL. As for the hyper-
bolic secant pulse, we also calculated the grating k-vector
for the pulse with a super-Gaussian spectral profile, fol-
lowing the prescription of Section 7. The result is still
very close to the k-vector designed for a Gaussian pulse;
however, it shows a slightly larger difference, as com-
pared with the hyperbolic secant. The SH pulse gener-
ated with the grating designed for this particular pulse
shape was slightly shorter, Dt2 5 5.9 fs, and slightly
closer to the transform limit, being 0.7% broader than
DtTL.

So far, the simulation results presented in this section
have assumed negligible material dispersion beyond
GVD. The utility of the approach developed in Section 7
can be seen especially well when this higher-order mate-
rial dispersion is included in the pulse propagation simu-
lations. We consider a Gaussian FH pulse and compare
the SH pulses generated in the grating designed, accord-
ing to Section 8, to account for the dispersion terms up to
GVD and in the grating designed, according to Section 7,
to account for the dispersion terms beyond GVD. In both
cases the grating amplitude is assumed to be unmodu-
lated. As can be seen from Fig. 8, dispersion beyond
GVD has a noticeable effect. If this higher-order disper-
sion is not accounted for, the SH pulse [Fig. 8 (dotted–
dashed curve)] has a pulse length of Dt2 5 8.8 fs, which
is 1.25 times broader than the length of the ideal pulse
(solid curve), and the pulse is 15% broader than the trans-
form limit. If the dispersion beyond GVD is accounted
for in the design of the grating, the SH pulse [Fig. 8
(dashed curve)] has substantially better quality, and its
pulse length of Dt2 5 7.7 fs is 10% broader than ideal and
is only 1.3% broader than the transform limit. The simu-
lation results for a hyperbolic secant pulse and a pulse
with super-Gaussian spectrum show similar behavior.
We again find that the required grating k-vector is rela-
tively insensitive to the particular pulse shape for which
it is designed.

As can be seen from this numerical modeling, the de-
veloped theory correctly predicts the grating k-vector dis-
tribution necessary to account for GVD and higher-order
material dispersion. The SH pulse quality appears to be
essentially independent of the pulse shape, at least for
the three representative pulse shapes with smooth single-
peaked spectra, in agreement with previous
observations.31 The generated SH pulses are consis-
tently 7–10% broader than the ideal pulses, the effect
caused by spectral truncation that is due to the finite
grating length used. More importantly, the phase is
compensated properly, giving pulses that are only ;1%
broader than the transform limit. We also note that, re-
gardless of whether the grating amplitude is modulated
or kept flat, the quality of the generated compressed SH

Fig. 8. SH pulses generated from a Gaussian FH pulse when
the material dispersion beyond GVD is included in the simula-
tions. The dashed curve represents the SH pulse obtained when
the QPM grating is designed according to the prescription of Sec-
tion 7 to completely account for the material dispersion; the
dotted–dashed curve, the SH pulse generated in a grating de-
signed to account for dispersion only up to the GVD terms (Sec-
tion 8). In both cases grating amplitude is unmodulated. Also
shown is the ideal SH pulse (solid curve).
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pulse is not greatly affected; in contrast, the efficiency is
several times better for gratings with no amplitude modu-
lation. We note, however, that, if it is desirable to gen-
erate a chirped SH pulse, the grating amplitude modula-
tion is necessary to avoid significant amplitude
modulation of the SH pulse.

10. COMPARISON OF QUASI-PHASE-
MATCHING FERROELECTRICS
In this section we provide, for reference, the dispersion
data obtained from the published Sellmeier equations for
several representative QPM ferroelectrics: lithium
niobate,36 lithium tantalate,35 and KTP37 (solid, dashed,
and dotted curves, respectively, in Figs. 9–12). Figure 9
shows the QPM period as a function of the FH wave-
length. Figure 10 shows the GVM coefficients dn as func-
tions of the FH wavelength. It is interesting that the dn
values for these materials are rather close to one another.
Figure 11 shows both the GVD coefficient b1 as a function
of the FH wavelength and the SH GVD coefficient b2 as a
function of the FH wavelength that generates the corre-
sponding SH.

The important parameters that enter the analytical
treatment presented are the normalized GVD coefficients
b i /dnt0 ; as pointed out in Section 8, the analysis is valid
when b i /dnt0 , 1. Figure 12 shows b i /dn as functions

Fig. 9. QPM period as a function of FH wavelength in lithium
niobate (solid curve), lithium tantalate (dashed curve), and KTP
(dotted curve).

Fig. 10. GVM coefficient dn as a function of FH wavelength in
lithium niobate (solid curve), lithium tantalate (dashed curve),
and KTP (dotted curve).
of the FH wavelength. We note that, except for the vi-
cinity of the wavelengths at which dn goes to zero (at
around 2.7 mm), the condition b i /dnt0 , 1 is satisfied for
pulses longer than '5 fs in the range l1 , 2 mm and for
pulses longer than '10 fs in the range l1 . 3.2 mm.

11. SUMMARY
We have presented a theory of ultrafast SHG with longi-
tudinally nonuniform gratings in the presence of GVD
and higher-order dispersion. The developed approach
gives an explicit prescription, valid for arbitrary material
dispersion, for engineering the QPM grating necessary for
a particular shaping function. The numerical simula-
tions of propagation of the coupled FH and SH waves con-
firm the validity of the presented theory and predict that,
when the dispersion is correctly accounted for, generation
of sub-10-fs transform-limited pulses is possible by dou-
bling of 10-fs pulses at a wavelength of 800 nm in a QPM
grating fabricated on a lithium tantalate substrate.

Although the numerical simulations predict that gen-
eration of compressed sub-10-fs SH pulses at 400 nm of

Fig. 11. FH GVD coefficient b1 as a function of the FH wave-
length, and the SH GVD coefficient b2 as a function of the FH
wavelength that generates the corresponding SH, in lithium nio-
bate (solid curve), lithium tantalate (dashed curve) and KTP
(dotted curve).

Fig. 12. Ratio b i /dn as a function of the FH wavelength in
lithium niobate (solid curve), lithium tantalate (dashed curve),
and KTP (dotted curve).
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good quality is possible, the theory does not account for
other nonlinear effects that can spoil the pulse quality.
In particular, the two-photon absorption (TPA) of the SH
is of concern because the SH photon energy exceeds half
the bandgap of lithium tantalate and because the peak in-
tensity of ultrashort pulses is high. A possible way of al-
leviating the TPA is to reduce the SH peak intensity by
generation of negatively chirped stretched pulses followed
by external compression by simply passing the pulses
through an appropriate length of a UV-transparent mate-
rial. A theory that incorporates TPA in the description of
the SHG process would be useful for the device perfor-
mance optimization in the nonnegligible TPA regime, as
would more-complete data for the spectral dependence of
the TPA coefficients.
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