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Optical parametric generation of a mid-infrared
continuum in orientation-patterned GaAs
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We have generated an ultrabroad mid-infrared continuum by using single-pass optical parametric genera-
tion (OPG) in orientation-patterned GaAs (OP-GaAs). The spectrum spans more than an octave, from 4.5 to
10.7 �m, measured 20 dB down from the peak. The 17.5 mm long, 0.5 mm thick, all-epitaxially-grown OP-
GaAs sample with a 166.6-�m quasi-phase-matching period was pumped with 3.1–3.3 �m wavelength, 1 ps
pulses up to 2 �J in energy. The OPG threshold was observed at 55 nJ pump energy with the pump polar-
ized along the [111] crystal direction. The slope efficiency near threshold was 51%, and the external conver-
sion efficiency was as high as 15%. © 2006 Optical Society of America

OCIS codes: 190.2620, 190.4410, 190.4400, 190.5970.
Gallium arsenide is a promising material for para-
metric frequency conversion because of its large non-
linear susceptibility (d14=94 pm/V for frequency
doubling of �f=4 �m),1 broad infrared transparency
range ��=0.9–17 �m�, and high thermal conductivity.
Also of interest are its highly symmetric nonlinear
susceptibility tensor and linear optical isotropy,
which facilitate nonlinear optical interactions that
use a rich variety of polarization configurations.
However, the optical isotropy of GaAs prevents bire-
fringent phase matching; efficient interactions can
instead be obtained by quasi-phase-matching.

Orientation-patterned GaAs (OP-GaAs) is a type of
quasi-phase-matched (QPM) GaAs in which periodic
inversions of the crystallographic orientation are
grown into the material. The advantage of OP-GaAs
compared with other QPM GaAs methods [such as
diffusion-bonded GaAs (Ref. 2) and Fresnel QPM
GaAs (Ref. 3)] is that OP-GaAs has lithographically
defined periods, which permit excellent periodicity
control and access to small QPM periods. To fabricate
OP-GaAs, a process based on photolithography and
molecular beam epitaxy is used to grow a thin-film
template with periodic crystal inversions.4,5 A thick
film (0.5–1 mm) is then grown upon this template
by hydride vapor phase epitaxy to produce
bulk OP-GaAs.6,7 With OP-GaAs, efficient
second-harmonic generation,1 difference-frequency
generation,8 and an optical parametric oscillator tun-
able from 2 to 11 �m (Refs. 9 and 10) have been dem-
onstrated. In this Letter we describe optical paramet-
ric generation (OPG) in OP-GaAs that has resulted in
an ultrabroad mid-infrared output spectrum span-
ning 4.5–10.7 �m.
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Anomalously wide tuning bandwidths for paramet-
ric processes are associated with wavelength �0,
where the group-velocity dispersion, d2k /d�2, of a
material goes to zero.11 If one pumps a nonlinear
crystal at �0 /2, broadband gain around the degener-
ate signal–idler wavelength can be obtained. Use of
OPG is a convenient way to investigate the broad-
band gain that occurs for GaAs when pumping at
��0 /2=3.31 �m. Slightly detuning the pump from
�0 /2 and choosing an appropriate QPM period to
compensate for the phase-mismatch results in even
broader gain bandwidths (at the expense of some
gain variation), as plotted in Fig. 1. Low-intensity
gain spectra, proportional to sinc2��kL /2�, spanning

Fig. 1. Normalized gain spectra in the low-gain limit,
sinc2��kL /2� (with L=10 mm), for 3.310 �m pump,
173.7 �m period (solid curve); 3.217 �m pump, 166.6 �m
period (dashed curve); and 3.059 �m pump, 154.2 �m pe-
riod (dashed–dotted curve). The last two curves show 1%
and 50% gain variation, respectively. These cases all fall
within the main, dark band in Fig. 2.
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well over an octave can be obtained by use of OP-
GaAs.

At high intensities, gain bandwidths are further
increased through parametric gain broadening.12 The
gain G in a three-frequency process is given by13

G = �2L2
sinh2�gL�

�gL�2 , �1�

where

g = ��2 − ��k/2�2�1/2, �2�

�2 =
2�s�i�deff�2Ip

nsninp�0c3 . �3�

�k=kp−ks−ki−KQPM is the the k-vector mismatch; s,
i, and p denote signal, idler, and pump, respectively.
The magnitude of the �k /2 term in Eq. (2) can be es-
timated from Fig. 2, which maps sinc2��kL /2� for a
166.6 �m period, 10 mm long OP-GaAs sample. If we
take the OPG threshold condition as G�1010, then
�L�12.2, so �L� ��kL /2� over a broad range of OPG
output wavelengths. Figure 3 illustrates an extreme
case in which the gain is peaked at degeneracy for
high pump intensities but is peaked at well-

Fig. 2. Gray-scale plot of sinc2��kL /2� for a 166.6 �m
QPM period, 10 mm long OP-GaAs sample. Dashed contour
curves indicate nodes where ��kL /2�=m� , m=1, 2, 3, 4.

Fig. 3. Theoretical gain spectra for a 3.28 �m pumped,
166.6 �m period OP-GaAs sample for four values of �L. At
the degenerate point ��=6.6 �m� for an L=10 mm sample,
��kL /2��5. This case is represented by the bold dashed–
dotted line in Fig. 2.
separated signal–idler wavelengths for low pump in-
tensities. When �L is large, the gain spectrum is
peaked where � is maximized (which occurs at degen-
eracy because ���s�i is biggest when �s=�i, assum-
ing that �s+�i=�p is fixed), whereas at low gain, the
spectrum is peaked only where �k=0 (at widely sepa-
rated wavelengths). We note that Eqs. (1)–(3) de-
scribe mixing for the idealized case of an undepleted,
plane-wave pump, but they are useful for qualitative
understanding of parametric gain broadening in
more general cases.

In our experiment, pump pulses were produced
with a Spectra-Physics OPA-800 system. The system
used a regeneratively amplified Ti:sapphire laser
down-converted through optical parametric amplifi-
cation and difference-frequency generation to pro-
duce 3.1–3.3 �m wavelength, 1 ps duration pulses up
to 2 �J in energy. The OP-GaAs sample was 17.5 mm
long and 0.5 mm thick and had a 166.6 �m period.
The crystal length was twice the group-velocity-walk-
off length between pump and signal waves, so the
stationary analysis used above is only approximately
correct. The pump was focused to a 75 �m 1/e2 inten-
sity radius spot (confocal focusing for the degenerate
OPG wavelength near 6.5 �m). The pump and output
waves propagated along the [110] crystallographic
axis with the pump linearly polarized along the [111]
direction such that deff = �2/���2/�3�d14.

9 The sample
was antireflection coated with R	0.5% in the signal
band, R	5% in the idler band, and modest reflectiv-
ity at the pump wavelength �R=14% �. The OPG out-
put was characterized with a grating monochromator
purged with nitrogen.

Figure 4 shows the OPG output as function of inci-
dent pump energy for a 3.25 �m pump wavelength.
The OPG threshold was observed at 55 nJ of pump,
which is consistent with our calculations based on
the G�1010 criterion. The peak intensity at thresh-
old was 0.6 GW/cm2 (0.6 mJ/cm2 fluence), which is
well below the damage threshold for GaAs. Near
OPG threshold, the slope efficiency was 51%, but the
curve soon rolls off as pump depletion, and parasitic
effects such as sum-frequency generation (SFG) and
nonlinear phase shifts become significant. The maxi-
mum external conversion efficiency observed was
15% at 140 nJ of pump.

The OPG spectrum for 3.28 �m pump wavelength
at 1.4 �J incident energy is plotted in Fig. 4. The
pump wavelength is not at optimum phase-matching

Fig. 4. Total OPG energy as a function of incident pump

energy. Threshold was observed at 55 nJ.
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for the 166.6 �m period grating, yet we observe a
broad output spectrum owing to parametric gain
broadening. At 20 dB down from the peak, the spec-
trum spans 4.5–10.7 �m, well over an octave wide.
The spectrum is actually broader than the detection
range for our HgCdTe detector, which is limited to �
	11 �m.

We believe that some dips in the output spectrum
result from phase-matched sum-frequency mixing of
portions of the OPG spectrum with the strong pump.
In particular, the SFG process, 3.28 �m+5 �m
→1.98 �m, is accidentally third-order quasi-phase-
matched by the 166.6 �m period grating. This pro-
cess depletes the OPG signal near 5 �m, which also
reduces the gain at the corresponding idler wave-
length at 9.5 �m and accounts for the dips labeled a
and b in Fig. 5. The expected SFG wave at 1.98 �m
was directly observed with the monochromator. Ori-
gins of other dips in the OPG spectrum are less clear.
It is interesting to note that the OPG spectrum re-
mains broad when the pump is tuned to different
wavelengths but that the fine structure of the spec-
trum (i.e., the position and number of the dips)
changes in ways that cannot be explained by para-
sitic SFG only.

There are other nonlinear effects, such as self-
phase modulation and self-focusing, that become sig-
nificant at the large pump intensities used in this ex-
periment. Using the Z-scan technique,14 we
measured the nonlinear refractive index for GaAs at
3.25 �m to be n2=1.5
10−13 cm2/W. At OPG thresh-
old, the maximum nonlinear phase shift caused by
the pump pulses is ��NL= �2�L /��n2I=3. Nonlinear-
phase-shift effects become important when
��NL�1,15 so it is clear that self-phase modulation
and self-focusing are significant under the conditions
investigated here. We have observed both spatial dis-
tortion and spectral broadening of the transmitted
pump. Note that broad bandwidths can be obtained
without these high intensities for near-phase-
matched cases, such as those shown in Fig. 1.

We characterized the divergence of the OPG by
measuring the energy transmitted through an aper-

Fig. 5. OPG output spectrum for a 3.28 �m pump at
1.4 �J energy. Dips at 5 and 9.5 �m (marked a and b, re-
spectively) are due to parasitic SFG.
ture as a function of distance, using a spectrally flat
pyroelectric detector. Using this method, we estimate
that the divergence angle of the OPG output was ap-
proximately twice that of an ideal 6.6 �m wavelength
Gaussian beam with the same waist size as the
pump.

This ultrabroad IR spectrum is an interesting ul-
trafast, near-diffraction-limited “lightbulb” source for
various spectroscopic applications for which octave
bandwidths combined with tight focusing or a high
degree of collimation are required.
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