Noncritical phase matching for guided-wave frequency conversion
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Inhomogereities in waveguide dimensions are a serious problem for guided-wave frequency
conversion devices. We discuss waveguide designs that make the phase matching
“noncritical” with respect to small changes in dimensions. Application of noncritical phase
matching results in larger fabrication tolerances, facilitating the practical realization of
nonlinear devices with long interaction lengths. We experimentally demonstrate the existence
of a noncritical thickness in a lithium nicbate waveguide, and analyze the dimensional
tolerances for second-harmonic generation in a poelymer waveguide.

The confinement of electromagnetic radiation in
waveguides greatly increases the efficiency of nonlinear op-
tical interactions.! One of the main problems in waveguide
frequency conversion is the need to maintain phasemaich-
ing (PM) over the entire length of the device. The PM
condition depends on the effective indices of the waveguide
modes involved in the interaction, which in turn depend on
the order of the mode, the wavelength used, and on the
material and geometrical characteristics of the waveguide
as manifested in the index profile of the waveguide struc-
ture. Thus, the inhomogeneities in the index profile along
the length of the waveguide can limit the phase-matchable
length for the interaction.

In this letter we address the problem of designing a
waveguide for frequency conversion applications such that
the PM is “noncritical” with respect to waveguide dimen-
sion, that is, the PM condition is independent, to first or-
der, of small variations in the dimensions of the waveguide.
Using second-harmonic generation (SHG) in s planar,
step index waveguide as an example, we show that a value
of waveguide thickness exists for which the PM is noncrit-
ical, and present expressions for the thickness tolerance in
both the critical and noncritical cases. Two cases of prac-
tical importance, symmetric and strongly asymmetric
waveguides, are examined, and the results are presented in
normalized form. We experimentally demonstrate the ex-
istence of a noncritical thickness in proton exchanged
waveguides in lithium nicbate (LiNbG,}, and analyze the
design of a polymer waveguide device. Use of noncritical
PM increases the dimensional tolerances of waveguides,
facilitating the fabrication of devices having long interac-
tion lengths for high conversion efficiencies.

For SHG in 3 waveguide, a spatially uniform nuis-
match of the propagation constants, Af3, reduces the ouvt-
put power according to

P, «sinc?(ABL/2), (1)

where L is the length over which the interaction takes
place, and Af is given by

Aﬁzﬁlm — Zﬁzu: (477/10)) (le - ‘}Vm)s (2)

where 8 and N arc the propagation constant and the effec-
tive index, respectively, evaluated at the frequencies indi-
cated by the subscripts, A, is the fundamental wavelength
in free space, and where we have assumed that there is a
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single mode at the fundamental wavelength participating
ir: the interaction. For a spatially varying Aj, the efficiency
reduction is generally less than that given in Eq. (1), s0a
reasonably strict tolerance on the maximum value of AB 1s

|ABL | <. (3)

The dependence of A on the waveguide thickness, f
can be obtained from an expansion around the value f3,

F(AB)
32

d(AB)
BB =bB(fo) + —37(6/) +

a7 (81372,

(4)

where §f = f — f, The interaction is phase matched
when AB(fy) = 0. If 0AB/3f70, then we consider the PM
to be “critical,” and this first-order term determines,
through Eg. (3), the allowable thickness variation &f. I,
however, JAB/3f = 0, the PM is “noncritical,” and AfF is a
second-order function of &1

Burns and co-workers proposed and demonstrated
noncritical PM for SHG by tuning the cladding index of a
planar waveguide, but the use of modal dispersion PM
required the use of modes near cutoff.” Other methods of
PM, including birefringent,l quasi-,,:’“é and balanced’ PM,
remove the constraints of modal dispersion PM, and enable
the implementation of noncritically phase-matched
waveguides for frequency conversion. Examples of theoret-
ical dispersion curves showing noneritical operating points
have appeared in Refs. 6 and 7.

To caiculate tolerances for critically and noncritically
phase-matched devices, and to establish design procedures
for achieving noncriticai PM, we must connect the deriv-
atives appearing in £q. (4) to the waveguide parameters.
For specificity, we consider SHG in a planar waveguide,
although the method is readily extended to other interac-
tions. Assume a waveguide with substrate index n, cover
index n,, maximum index in the film n, and film thickness
/- The normalized guantities describing the waveguide, fol-
lowing the notation of Kogelnik and Ramaswamy,® are
given in Table 1.

We begin with the first derivative term in Eq. (4).
With Eq. (2) we have

S(AB) /4w (3N, ON,
- e

al
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TABLE L MNormalized waveguide quantities.

Normalized
qguantity Symbol Equation
film thickness v G/l \,m
effective index b (N? — nf)/("?} —n)

=N — n)/(ny~ n} (for ny=ny)
asymmetry- a (nl-- w2/ (ny -~ ni) {TE)
parameter (/) (i — nl) /(- nh) (T™M)
made size |14 V4 /b4 i/VEFa

To find IN/3f we use the normalized effective index &
and normalized film thickness V given in Table I, and not-
ing that 0F/3f=¥V/f, we obtain

aN nff — n% db  fnp—n, v ab
3f \ INS av~ ba v
The approximate form in this and the following equations
holds for weakly guiding waveguides (n, = n,). Defining a
dispersion pararmeter r as the ratio of the differences of the
film and substrate refractive indices at the fundamental and
barmonic wavelengths

(6)

, (7)

F=—3

I 143

2 2
__nf.2w - ”y,zm ﬂf;lm — Hs2
= S
5,0 nf.m — A0

Jw

we can rewrite Eg. (5) with Egs. (6} and (7} as

HABY 4w (nF,— i I N, ab )
(8F) A7 M (V~-) —{v ) |
2 2]

af ‘f'j"‘w ZNm NZw : v - \ v j
4 L, 9b |
::*—/;L;(nfm — Hyp) [ Vw(fo‘3 éfi;’ e

ab (8)
7, )|

where the additional assumption of weak dispersion
(#f20 + Hg2p = Fyp + ) is necessary for the validity of
the approximate form. The bracketed expression is a di-
mensionless quantity which describes the difference in dis-
persion of the harmonic and fundamental modes. We isc-
late this quantity by defining a sensitivity function g

— { N V_@_ (‘Vé}é
gfz\mw)r< W)Zm“ \ 8V}m

e av i av i )
V=24V, VeV
(9}

The approximate form is a function only of r and ¥, and
thus can be written g .(» V).

For critical PM g 520, and we can use Eq. (3}, (4},
(8), and {9) to write an expression for the allowzble frac-
tional variation {(8//f). in the thickness for a desired in-
teraction length L

i (éf/f)cl {\i'}“m/g4l‘(nf,u) ’_ n.&',m) lgri 1 <10)
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FIG. 1. Sensitivity |g.! vs normalized thickness V,, for dispersion pa-

rameter r= 1,2, and for symmetric (¢ =0} and strongly asymmetric
(@ == o} step index profiles. For g | == 0 there is no first-order depen-
dence of AS on thickness.

If g. =G, the right-hand side of Eq. (10} diverges and
the interaction is noncritically phase matched. The toler-
ance in this case, (8//f ), is obtained by an analysis sim-
ilar to that leading to Bg. (10), but retaining the second-
order term in Eq. (4). We find

‘ (§f/(f}nul < \/;{U,/[QL(VILM - n&a.\) 'gncl };’ (11)
where g, is the dimensionless sensitivity function
b Fb
2 {4 _95
gnc(r)“ Vnc\\4) !}E/rz V-‘Z\;V“c aVZ . Vnc\‘i ’ (12)

where we give only the approximate form appropriate for
weak guidance and weak dispersion. Note that for critical
PM, the allowable variation in f scales as i/4, while for
noncritical PM it scales as 1/ VL.

To this point the analysis is general, and applies to any
waveguide index profile. The differences between various
waveguides are manifested in the form of g, which de-
pends on the index profile. As a specific example, we eval-
uate g, for the asymmetric step index waveguide analyzed
in Ref. 8, and assume weak guidance and weak dispersion
s0 that the approximate forms of Egs. (6)-(12) can be
used. The analysis applies to either TE or TM modes if the
appropriate form is taken for the asymmetry parameter o
defined in Table I. With Eq. (16} of Ref. 8, gb/
AV =2{1 — b}/ W, we can write Eq. (9) as

gc(rv Vm) '_:‘ZV(u{er/zi ( I~ wa)/W“m]

- [(1 - béu)/Wm}} . (13)

where W is the normalized mode size given in Table 1. In
Fig. 1 |g.| is plotted as a function of ¥, for various values
of r, and for the symmetric and sirongly asymmetric cases,
a = 0and g = «, respectively. For ¥, > 4, the asymptotic
expression given for (V) in Eq. (19) of Ref. 8 can be used
instead of solving the exact, transcendental relation, with a
resulting error in g, of fess than 7% for the cases plotted
here. In Fig. 2(a), the normalized “‘noncritical thickness”
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FIG. 2. (a) Normalized noneritical thickness ¥, and (b) sensitivity
1&uc! vs dispersion parameter r for symmetric and sirongly asymmetric
step index profiles.

¥, for which g, = 0 is plotted as a function of r and a. To
evaluate g,, we require the second derivative &°b/3¥?,

which is given by

b 21 —b)\1/1—b
érz:( (Wz ))[( W)[b_3/2+(b+a)-3/2]'—‘3-
(14)

In Fig. 2(b) we plot the sensitivity parameter |g,..|, ob-
tained with Egs. (12) and {(14), as a function of r and a.

To empirically demonstrate the existence of a noncrit-
ical PM point, we determined the mismatch AfS between
the propagation constants of two, harmonically related
wavelengths in a planar waveguide as a function of guide
thickness. Substrates of Z-cut LiNbO,; were exchanged in
pure benzoic acid at 200 °C, producing TM waveguides
with nearly step index profiles, having thicknesses in the
range 0.33-0.57 um.*!° The effective indices of the lowest
order modes at 458 and 916 nm were determined for each
sample by prism coupling. The differences AfS are shown in
Fig. 3, together with theoretical curves calculated using
extraordinary indices at 458 and 916 nm of 2.275 and
2.165,'" and An, values at 458 and 916 nm of 0.1775 and
0.115.1? While the experimental data are displaced from
the theoretical curves, it is clear that a turning point in A8
is observed close to the predicted “noncritical” thickness.

To ilustrate the increase in tolerances obtained with a
noncritical design, we analyze a planar, periodically poled,
polymer waveguide device recently applied to the quasi-
phase-matched SHG of 0.67 um radiation'® The waveguide
is symmetric with f=13 um, nsy, = 1.606, n;,
= 1.488, n;,, = 1.576, and n,,, = 1.482." Thus, r = 1.26
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FIG. 3. Calculated and measured values of AS for proton-exchanged
LiNbO; wavegnides at 458 and 916 nm. The exaci curve is obtsined by
solving the eigenvalue relations in Ref. 8, and the spproximate curve
results from Eq. (4).

and ¥, = 3.27, so the device is critically phase matched,
with |g.| = 0.17 and | (8//f).| = 2% mm. For noncrit-
ical PM, ¥,. = L75 (f=0.7 pm}, |g.] = 046, and
{(8F/F)ne! = 12% Ymm. For an interaction length of 10
tnm, the allowable thickness variations |8f| are then 2.7
nm for the actual, criticaily phase-matched device, and 27
nm for the proposed, noncritically phase-matched struc-
ture.

We have described noncritical waveguide designs with
nio first-order dependence of phase matching on the wave-
guide dimensions, which should significantly increase fab-
rication tolerances for nonlinear guided wave devices. Re-
sults are given as a function of waveguide parameters for
symmetric and strongly asymmetric step profile
waveguides, but noncritical scolutions can be found for
other common waveguide profiles, and will be discussed in
a future publication.
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