5 or even larger. We consider a case with the comparatively
large core separation D =S5, to have negligible P./P,. For
p=38um and A =0-005 (this gives V ~ 24 in the wave-
length range of 1-5-1:6 um), the coupling length will be about
16cm. For nonlinear integrated optical waveguide couplers,

1-0

Py (L) /P1(0)
o
>
T

o
~
— T

10
P](O) i @812

Fig. 2 Nonlinear power transmission P ({z)/P(0) for n/2 (ie. Co2Z =
C,z = n/2) coupler for various values of D

conventional result found by neglecting nonlinear mode
field effect

Core separation V = 2-0

Curves are labelled with D values

there is always a constraint on the device length due to the
nature of the integration and the fabrication technique. It
seems impractical to fabricate integrated waveguide couplers
with lengths over 10cm. Hence, nonlinear couplers will prob-
ably have to be made with small core separations, and thus
nonlinear modal effects will have to be taken into consider-
ation. This will be particularly relevant in cases where optical
circuits using integrated optical waveguide couplers are to be
designed with small dimensions for optical signal processing
or computing.
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Fig. 3 Ratio of critical power to single fibre selfguidance power P /P in
optical switching using directional couplers

In summary, we have examined the nonlinear mode field
effects in nonlinear fibre couplers. We find that, even in cases
where P/P <1, the nonlinear change in the fundamental
mode field in the cladding region can be quite significant. This
implies that the nonlinear mode field effect can be an impor-
tant factor in designing and analysing nonlinear optical
devices, particularly those that depend on the evanescent part
of optical guided waves.
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SURFACE EMITTING SECOND HARMONIC
GENERATION IN VERTICAL RESONATOR

Indexing terms: Resonators, Harmonic generation, Wave-
guides

The efficiency of surface emitting second harmonic gener-
ators can be significantly increased by resonating the second
harmonic field in a vertical cavity structure. These resonant
devices can be several orders of magnitude more efficient
than similar nonresonant devices. Milliwatt visible outputs
can be expected for tens of milliwatts of infra-red input in a
doubly resonant structure for reasonable device parameters.

Introduction: Several workers'? have demonstrated surface
emitting second harmonic generation (SHG) in waveguide
devices. The limited vertical interaction length reduces the effi-
ciency of this interaction compared to collinear SHG. Even if
quasi-phasematching methods? are used to solve the inter-
ference problem, the efficiency will increase with the core
thickness only up to the point where the mode size begins to
scale with the waveguide thickness. Although a waveguide
resonator,' which increases the circulating pump power, is
clearly an improvement over a nonresonant structure, the
theoretical second harmonic power output for a realistic circu-
lating pump power is still too low for many applications.

Resonating the second harmonic wave also increases con-
version efficiency, as shown by Ashkin et al.? for the collinear
case. The purpose of this Letter is to develop and apply
a simply theoretical model for doubly resonant SHG with
orthogonally propagating fundamental and second harmonic
waves, as shown in Fig. 1.

Theory: Although it is possible to analyse this interaction
exactly in the limit of no pump depletion by solving the
appropriate boundary value problem,* a coupled cavity mode
formalism® provides additional physical insight and allows
treatment of pump depletion. For simplicity, we assume a slab
waveguide geometry where both the fundamental and second

L2sn

Fig. 1 Side view of surface-emitting waveguide resonator geometry

Coupling mirrors for pump and second harmonic field, respec-
_ tively, are MY and M}, whereas nominal high reflectors are M%
and M3, respectively
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harmonic fields are TE. In this case, we may write the electric
field as

E, = H{a,(ON  /(x) sin (Bz)e ="
+ i@, (N, sin [k (x + L/2)Je™ 2 + e} (1)

where f(x) is the transverse field distribution, j is the propa-
gation constant of the fundamental mode, and the dimensions
of the waveguide resonator are L x w x [ (Fig. 1). The nor-
malisation constants N, and N, are chosen such that the
circulating powers are given by P9, =n,Lw|a,|*/n2, and
P2 = lw|a,|*/n,,, where the effective index of the funda-
mental mode is n, = fic/w, and the indices of the core at w and
2w are n, and n,,, respectively. The wavevector k,, =
2n,, w/c.

With this normalisation, the coupled equations for the on-
resonance cavity mode amplitudes a, and a, are

ay = —xata, — y14, + ()
a; = ka} — Y2082 (3)

The interaction frequencies are assumed to be far enough
from all material resonances that we can write the total non-
linear polarisation as Py, (t) = 2e4d, ., E¥1) where d.sr
accounts for the projection of the modal fields on the SHG
tensor d. We then find that the nonlinear coupling coefficient
«x is real, due to the phase convention in eqn. 1, and is given
by

o BZoody T

2
Ny Mae

@

where Z, is the impedance of free space, and the dimension-
less overlap integral [ is

L2

1= : j FHx) sin [kpfx + L/2)] dx ¥

-Li2

where L, = {* f?(x) dx by definition. The linear loss param-
eters are

__c
T on,l

V1 [1 — V(R Rge™ ]

c
2m(Tl+5) (6)

(4 -
v = 5 [ = V(RI"RE%e™202e0)]
20

~_¢ 20 | 520
74n2wL(T' +6%7) U}

and the driving term g; is

¢ (nE TPy \'?
o\ T ®)

g =
2n,1\ n,oL

where P,  is the incident power. All mirrors satisfy
R + T + A =1, where R is the reflectivity, T is the transmit-
tance, and A is the loss of the mirror. The superscript and
subscript notation for mirror quantities is shown on Fig. 1.
The power attenuation coefficients for the fundamental and
second harmonic modes are a,, and a,,, respectively. Eqns. 2
and 3 correctly model the steady state behaviour for arbitrary
input and output coupling, provided all other linear losses are
small. If, in addition, the linear coupling is small, the simpler
approximate forms for y, and y, given in eqns. 6 and 7 apply,
where 6°=T$ + Ay + A3 + 2x,], and 6%° = T32 + A}
+ A3° + 20, L.
The steady state form of eqns. 2 and 3 is

a, = (k/yz)ai ©)
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and

K? &
all:l +—]a1|z:|=4 (10)
17 b

172 1

Because a; is in phase with ¢, we lose no generality in taking
¢ to be real in eqn. 8. Eqn. 10 for real a, is a cubic with a
unique solution.

In the low conversion limit, ie. where a; ~ ¢/y,, we find,
using eqns. 8, 9 and 10 and the relation P,,, = T$“P2%, that
the surface-emitted second harmonic power P,,, is

P

out

12822 Zod2, 1P 1 AT}
w (T2 & 5%0)2

2 2 2
Pl neny, Ag

1 single pass pump

x 4Ty T an
T+ o resonant pump

where 4, is the free space wavelength of the fundamental, and
the low loss forms given in eqns. 6 and 7 are assumed to be
valid. We see that the conversion efficiency in this limit is
maximised by the usual low loss cavity impedance matching
conditions for the resonant modes, namely T3% = 62 and, if
the pump is resonant, T¢ = 5%, where T is the optimal coup-
ling. If material losses are the dominant losses in the system,
then 6 o« «,,, 82 oc at,,,, and the dependence of the conver-
sion efficiency of an optimally coupled device on the material
parameters is of the form dZ,/n2 n,, a2 o5,

Discussion: Owing to their large absorption losses, III-V semi-
conductors with 2hw greater than the direct bandgap, which
have been used in conventional surface emitting second har-
monic generators,! are clearly inappropriate for resonant
second harmonic interactions. Nonlinear media with much
lower absorption coefficients are better candidates for SHG of
blue or green light, even if their nonlinear susceptibilities are
somewhat smaller, e.g. wide-bandgap II-VI semiconductors.
Certain organic crystals with very large nonlinear suscep-
tibilities and moderate losses are particularly attractive for
resonant applications. For example, 2-methyl-4-nitroaniline
(MNA)® has an extremely large nonlinear susceptibility,
d;; = 250pm/V, is relatively transparent at 0-5um, and has
already been grown in appropriate waveguide geometries.’

To calculate the cfficiency of a resonant surface-emitting
SHG device, we must evaluate the overlap integral I defined
in eqn. 5. For simplicity, we analyse only the symmetric wave-
guide case, and assume the dielectric mirrors can be modelled
as a uniaxial form-birefringent medium® at w so that the clad-
ding can be modelled with an index n,, for TE modes. As the
details of the cladding fields are unimportant here, this is an
adequate approximation for w when the mirrors are quarter
wave stacks at 2w. Finally, we assume the fundamental is
propagating in the lowest-order transverse mode, so that

cos (2U,/Ly
¥ cos (U)e—W;Zx/LI

|x| < L/2

|x|=L/2 12

f(X)={

Here the mode parameters U and W are given by 2U =
ko L(n% — n2)'/2, and 2W = ko L(n? — n?)"2, where ko = w/c.
The eigenvalue equation for n, is, from Reference 9, W = U
tan U. Owing to the simple form of f(x), the overlap integral
defined in eqn. 5 can easily be evaluated. Noting the cavity
resonance condition for the second harmonic, k,,L = mn,
where m is an integer, we find

L1 mn cos (2U)

=2 |—— 2
1 L, |mn 16U? — m*n?

(13)
for odd m and I = 0 for even m, where L, = 1L(1 + 1/W) for
this case. If quasi-phasematching were obtained by reversing
the sign of the nonlinear coefficient every half wavelength, the
overlap integral for odd m would be approximately m times
larger.

The fundamental mode of an MNA waveguide with 4, =
1-06 yum, n, =18, n, =17, n,, =22, and L =3n/k,,=
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036 um has an effective index of n, = 1-73. If we further
assume a nonresonant pump, o = Sum, | = 100um, d,,, =

d,, = 250pm/V, and T?® = T2 = §*® = 0-01, and use eqn.
11 we find P,,,/P%, = 0-05W ~'. Because m = 3, we expect the
efficiency to be approximately nine times larger if quasi-
phasematching is employed (numerically we obtain a factor of
13-4), which gives P,,./P%, = 0-66 W™ 1.

If both the pump and the second harmonic are resonant,
the assumption of low conversion efficiency is no longer valid
for an incident power of the order of 100 mW, as is easily seen
from the above numerical result. In such cases, eqn. 11 is no
longer valid, and the exact solution to eqns. 9 and 10 must be
used. We give a numerical example here, reserving a more
detailed analysis for future work. Assuming A% = A} =
0-005, 6” = 0-05, no quasi-phasematching, and P;,, = 100mW
in addition to the above parameters, we find a maximum
second harmonic power output of 36mW for an optimal
coupling given by T¢ = T = 0:097, and T3° = T2 = 0-027.
We see that high conversion efficiencies are possible for
modest input power, and that the optimal coupling differs
from that calculated in the low efficiency regime.

Conclusion: We have shown that vertical cavity resonant
SHG structures can have significantly higher conversion effi-
ciency than conventional surface emitting SHG devices, and
have identified dZ;;/nn,,a’a,, as the relevant material
figure of merit for a doubly resonant interaction. A phase-
matchable nonlinearity is not necessary, as seen in the numeri-
cal example where tens of milliwatts of second harmonic were
obtained for a 100mW pump using the nonphase-matchable
d,, coefficient of MNA. The efficiency may be significantly
increased over that calculated here if quasi-phasematching
techniques can be applied in this resonant geometry. Exten-
sion of this theory to TM modes, multilayer waveguides and
interactions such as parametric amplification and oscillation
will be given elsewhere.
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REVERSE HUFFMAN TREE FOR
NONUNIFORM TRAFFIC PATTERN

Indexing terms: Codes and coding, Digital communication
systems, Communication networks

The tree protocol has been an important protocol in multi-
access communication channels with traffic that arrives uni-
formly. In the Letter, a reverse Huffman tree protocol is
proposed for multiaccess networks with nonuniform traffic
pattern. Some tree construction protocols are developed and
reverse Huffman tree protocol is shown to have the smallest
delay.

Introduction: This Letter considers the multiple accessing of a
broadcast channel by a set of independent stations. For
broadcast channels, the resolution of channel contention is the
heart of the multiaccessing. problem, and the tree protocol
provides a good solution.'~* However, the original tree proto-
col was designed for systems with uniform arrival rates.

In this Letter, a system with nonuniform arrival rates is
considered. Because each station has its own traffic intensity
which may be different from others, different structures may
influence the average packet delay. The packet delay is a
major issue of the system performance and is defined as the
time from the instant that a packet arrives at a source to the
instant that it is successfully received by its destination.

To build the tree for a system with nonuniform traffic
pattern, we apply the coding schemes developed from coding
theory to construct the tree. We notice that Huffman coding,
the best coding scheme which minimises the average code
length, has a good performance but does not achieve the best
performance. Hence, we propose another scheme called the
reverse Huffman code tree which achieves a better per-
formance than the Huffman code tree.

Tree types and simulation results: We first propose four
schemes in constructing the tree structure. We then run simu-
lations to show and compare the performances of different
schemes. To provide an example, we let I= (1,5,6,9,12, 18,
23, 40). Note that the overall system arrival rate cannot exceed
unity to achieve a stable system, hence this £ is just a scaled
vector which shows the relative ratio of packet arrival rates to
all stations.

(i) Random: In this method, we construct a balanced tree and
randomly map stations to tree leaves.

(il) Low traffic first tree: In this method, we build a balanced
tree and map stations to tree leaves in an ascending order of
the traffic arrival rates. Clearly, the delay performance of this
tree will be poor and we will use it as the worst case in the
performance comparison.

(iii) Huffman code tree: With one Huffman code method,® we
can obtain a good tree structure and mapping. We arrange 4;
in a descending order and the depth 4, in an ascending order;
i.e. we have both

A <A, <A< <Ay
and

dyz2d,>dy;>...>dy
Note that under this tree construction method, we minimise D

over all structures where D is defined as D = Y™, A,d;. This
D corresponds to the average code length in coding theory.

Algorithm:

(1) combine the two nodes with least transmission rates (j and
k) into a dummy node; Agmmy = 4; + 4

(2) construct a binary tree; this dummy node is the father
node, and the two corresponding nodes are descendants (left
child and right child)

(3) delete 2; and 4, from 7 and add Adummy tO 1 gotostep 1
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