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The guided modes of anisotropic waveguides are known to be leaky when degenerate radiation modes of the or-
thogonal polarization exist. These losses can be quite large when the principal axes of the dielectric tensor are
not aligned with the waveguide axis. We calculate the leakage rate in waveguides that have arbitrarily oriented
dielectric tensors, using a perturbation expansion that is valid for weak guidance and weak anisotropy. A rela-
tively simple expression for the loss is obtained and is applied to model cases drawn from planar and fiber

waveguides with step- and graded-index profiles.

The scaling of the loss with profile height and anisotropy is

discussed, including the practical case of strongly asymmetric planar waveguides.

1. INTRODUCTION

It is well known that modes that are polarized along the
fast axis of an anisotropic waveguide are in many cases
leaky. The leakage is caused by the coupling of the guided
mode to nearly degenerate radiation modes of the orthogo-
nal polarization. Such degenerate modes exist whenever
the birefringence of the waveguide exceeds the index dif-
ference between the core and the cladding, and coupling
between modes occurs if they are not linearly polarized
along principal axes of the dielectric tensor. In planar
waveguides the latter condition holds only when certain
off-diagonal elements of the dielectric tensor are nonzero.
However, coupling is always present in two-dimensional
waveguides, because the true modes are not linearly polar-
ized. If, in addition, the off-diagonal elements of the di-
electric tensor are nonzero, stronger coupling can occur.

The leakage that is due to stress-induced birefringence
has been used in the design of single-polarization glass
fibers." In anisotropic crystalline waveguides, such leak-
age can be orders of magnitude larger and often precludes
propagation in directions that are of interest for applica-
tions, particularly in nonlinear devices. A number
of analyses of the leakage loss in planar structures have
been published, including an exact solution of the symmet-
ric? and the asymmetric®* planar waveguides, a WKB
method,*® a coupled-mode method,” and a multilayer nu-
merical approximation.?

Snyder and Ruhl® presented a useful weakly guiding
perturbation method for a step-profile anisotropic fiber in
which one of the principal axes of the dielectric tensor
aligned with the waveguide axis. Later Ruhl and Snyder”®
demonstrated a Green function method for the same prob-
lem. The leaky modes in fibers in which the principal
axes in both the core and the cladding were aligned with
the waveguide axis but were misaligned with each other in
the transverse plane are discussed in Ref. 10.

In the present study we extend the method of Ref. 1 to
waveguides with arbitrarily oriented dielectric tensors.
We begin by recasting Maxwell’s equations as scalar-wave
equations for the Cartesian components of the modal
fields, with coupling terms based on waveguide geometry
and material anisotropy. A perturbative solution that is
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valid in the limit of small anisotropy and weak guidance is
presented, and an expression for the leakage loss is given.
A simple general form for the coupling term is derived and
is applied to the calculation of the leakage rate for various
planar and circular waveguides.

2. DERIVATION OF THE MODAL FIELDS
AND THE LOSS

In this section we recast Maxwell’s equations for a wave-
guide of arbitrary anisotropy as a set of coupled scalar
equations for the Cartesian components of the modal
fields. We then obtain the modal fields to first order and
propagation constants to second order in the coupling.
The loss is proportional to the imaginary component of
the propagation constant. In the following derivation we
follow the perturbation method and the notation of Ref. 1
wherever possible.

A. Modal-Field Equations

A general waveguide is drawn schematically in Fig. 1,
where the waveguide axis is along z. From Maxwell’s
equations and the constitutive relations for the fields we
write the equations obeyed by the exact vector modal elec-
tric fields E as

VE + k% -E =V(V-E), o))
V-(e-E)=0, (2)

where & = w/c is the free-space propagation constant and
the magnetic permeability u has been assumed to take the
vacuum value uo. For an ideal waveguide oriented along
the z axis, the dielectric tensor € is a function only of the
transverse coordinates, i.e., € = €(x, y).

The most general possible dielectric tensor €’ for a loss-
less nongyrotropic medium is symmetric and has six inde-
pendent elements €'; ;, where I, J = 1,2,3 and refer to the
crystallographic axes. For simplicity we derive the results
for the case in which the medium is uniaxial and the opti-
cal axis 3 lies in the y-z plane at an angle a to z (we as-
sume a uniform « through the waveguide, contrary to what
is done in Ref. 9). Referred to these axes, the dielectric
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Fig. 1. Waveguide structure is lossless and z invariant. The
characteristic transverse dimension is p; the dielectric tensor is
€., in the core region and e in the cladding. For uniaxial media,
optical axis 3 lies at an angle a to z in the y-z plane.

tensor e takes the form

e=| 0 €, €.} 3)

where the €, are given in term of the €;; as

€:x = €11,

€,, = €, cos* a + €l sin® @,

€, = €, sin” @ + €i; cos® a,

€,. = (€33 — €1)sin @ cos a. (4)

Assume a modal field of the form E = e(x,y)
expli(Bz — wt)]; Eq. (1) becomes

- 9 [ de, e -
(V.2 + F%¢,, — BYe, = — 4 % + iBe, |,
d9x \ dx ay

_ _ 9 (oe, ode, . _
(V.2 + k¢, — BYe, + k’¢e, = 3;(5; + a—; + LB@) ,

- _ de, e =
(V2 + ke, — BYe, + k¢,e, = iB(—-e— + &y lﬂez) ,
y

and Eq. (2) becomes

d - a - _ . - —
a(exxex) + By(éyyey + €yzez) + lB(Ezzez + eyzey) = 0’
(6)

where V,2 = 9%/0x° + 9%/ay>.

We can obtain an expression for e, from Eq. (6). To
separate to first order the contribution of e, of the off-
diagonal elements ¢,, from that of the waveguide struc-
ture, we make the substitution

— €y, — -
e,=—-——e¢ +e (D
GZZ
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With Eqgs. (6) and (7) we obtain

-, 1 (e, 0e, _ €, 39 £, de,
e, = ——|— + e,— —In €, —
1B\€,, 0x €,, 0X €, 0X
_ €&y 0 . .
+e,~= —1Ing,], -3
€,, 0X

where we have assumed that pBe.. >> €,., which should
hold for all cases of practical interest, and have defined

E2

- L ~¢,. 9
€

ZZ

€yy = €yy

Eliminating e, from Egs. (5a) and (5b) using Egs. (7)
and (8) leads to the coupled equations for the transverse
components of the modal electric fields

(V.2 + k%,, — BYe, = P,.e. ~ P.e,. 1a
(V.2 + k%,, — B%e, = Pye. + Pye,. 10b)
where
a xx _x a - Txx a
Poo—2|(1- 8|0 L=l e) (11a)
9x €,/ 0X ax €;, 0X
_ d € de, ad - d
Pye,=—]|1 - ) 2 e,-eﬂ-—ln E“)
ax €./ Oy dx €z, 0Y
.0 [ €, —
- 18— 11b
i (en ey), (11b)
af )98 | 9 (- s d
Pe, 1- £ Gl 2 xe——ln e,,)
ay | €,./) 0x dy €. 0
k? €, 0 -
+ = (€xe), 11
i €, ox (€ccez) (11c)
- e e \oe,| o (-&, 0
Pe, =— 1-2) &2 e,—2 —1Iné,,
ay L €./ 9y | ay €, 0Y
0 (€ Ee,d . _
- + — = —(&,e 11d
lB ay <Ezz ey) LB Ezz ay (Eyy y) ( )

If €. = 0, Egs. (11) reduce to those given in Ref. 1 for
waveguides with diagonal dielectric tensors.

If the terms on the right-hand sides of Egs. (11) vanish,
Egs. (10) become uncoupled scalar-wave equations for the
Cartesian components of the modal fields. The solutions
of these equations are the well-known linearly polarized
(LP) modes that are good approximations for the modes of
weakly guiding isotropic waveguides. The second term on
the right-hand side (RHS) of each part of Egs. (11) appears
even in isotropic waveguides. In Egs. (11a) and (11d)
these terms represent polarization corrections that are
due to the waveguide structure,” while in Egs. (11b) and
(11c) they cause polarization coupling in two-dimensional
waveguides. The first term on the RHS of each part of
Egs. (11) vanishes in isotropic waveguides and represents
polarization coupling that is due to the difference between
€, Or €,,—the dielectric constant that the small z compo-
nent of the modal field would be expected to see—and e;.,
the dielectric constant that is actually present in an aniso-
tropic structure. The third term on the RHS of each part
of Egs. (11b)-(11d) and the fourth term of Eq. (11d) are
present only when a principal axis of the dielectric tensor
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is not aligned with the waveguide axis, and they represent
coupling induced by the material anisotropy between the
small structural z-polarized component of the predomi-
nantly x-polarized mode and the z-polarized component of
the predominantly y-polarized mode.

The modal field equations (10) for anisotropic weakly
guiding structures can be solved with a pertubation ex-
pansion. The uncoupled LP modes are taken as the basis
modes, with coupling that is due to the perturbation terms
on the RHS’s of Egs. (10). Coupling between modes of the
same polarization exists when the P; e; terms do not vanish,
while the P;e; terms give rise to coupling of orthogonal
polarizations. We are interested primarily in calculating
the loss that occurs when a guided mode is coupled to de-
generate radiation modes. Generally speaking, guided
and radiation modes of the same polarization are not de-
generate, but if the material is anisotropic, degeneracy be-
tween modes of orthogonal polarizations can exist.

In Subsection 2.B we carry out the perturbation expan-
sion to second order, the lowest order in which an imagi-
nary component of the propagation constant can appear.
If the coupling is between guided modes, a hybrid guided
mode results, as is discussed in Ref. 12. If the coupling is
between a guided mode and degenerate modes, the guided
mode becomes leaky. Equations (10) can be used to de-
scribe both of these phenomena, but in this paper we apply
them only to the calculation of leaky modes.

Further discussion of the solutions of Egs. (10) is facili-
tated if we assume a specific form for the spatial variation
of the elements of the principal dielectric tensor,

e.’]J(‘x’ y) = ez’]J,co[l - 2AJfJ(xy y)]r J = 173} (12a)

where €;., is the maximum value of the €}, component,
2A €5, 1s the difference between the dielectric tensor
component in the core and the cladding, and A, is known
as the profile height. Functions f;(x, y) describe the spa-
tial variation of the dielectric tensor components, normal-
ized to vary between 0 and 1. By assuming this form, we
have restricted the analysis to systems in which the orien-
tation of the principal axes does not depend on the trans-
verse coordinates. The dielectric tensor components e,,
and e,, are related to e}, through the expressions in Egs. (4)
and hence can be written in the same form as Eq. (12a).
In this way the profile heights for the transverse polariza-
tions, Ax and Ay, are introduced. It is convenient to char-
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acterize the anisotropy by the quantities &;,, defined by

_1, ey |
Suilx, y) = 9 |:1 e (x, y)] o

and to use the usual definition of the normalized frequen-
cies V, = pkn, .,(2A,)"%, wherei = x,y and n; = €;"* is the
refractive index.

Note from the definition of normalized frequency in
Table 1 that p8 « A for fixed V and pd/dx is of order
unity; it is clear that, for weakly guiding (A << 1) and
weakly anisotropic (§ << 1) waveguides, the first two
terms on the RHS’s of Egs. (11b) and (11c) are small.
Thus when ¢,, = 0, a solution correct to first order in A
and & is generally valid. When ¢, # 0 the third terms on
the RHS’s of Eqgs. (11b) and (11c) are of order 6A™"% the
terms are small when § ~ A but can be large when 6 => A.
However, we will show in Subsection 2.C that these cou-
pling terms are actually of order A¥® and thus can be re-
garded as perturbations as long as A,8 << L.

The zeroth-order solutions, e((gix and e((ggy, obtained from
the homogeneous forms of Egs. (10), are the familiar lin-
early polarized modes. We can then construct modal-field
solutions to the coupled-field equations (10) in such a way
that they are either purely x polarized or y polarized to low-
est order. We assume that a predominantly i-polarized
mode, written as e, and its propagation constant 8, can
be expanded as power series in the small quantities A and
o (which are treated as being of the same order):

_ @ 1 2 . 1 @) .
ey = (e((i))i + e((,-))i + e((i))i + . )1+ (e((l-))j + eyt .03,
(13a)

Bwo = Bwo + Ban + Bz + ... (13b)

We can evaluate the series given in Egs. (13) by substitut-
ing them into Egs. (10) and equating like powers of the
perturbation, which gives the approximate equations for a
predominantly i-polarized mode:

(V2 + R’y — Biple =0, (14a)
(V2 + B*e; — Binlels; = Pye), (14b)
(V2 + k%€ — B(zi)o)eéil))i = 2B(i)OB(i)le((?))i + Piie((g)i, (14c)

2 2 2 2y __ 2 0
(V2 + k% — Bowel: = (2BwoBue + B(i)l)e((i))i
1 1 1
+ 2BwoBaney + Puely + Pyell;.
(14d)

Table 1. Waveguide Parameters

Polarization
Parameters x Y
Dielectric Constant €. = €11 €, = €11 sin o + €33’ cos® @
Profile ny(x, y) = (€0)"* ny(x, %) = (6,)'"*
Profile Height A=A, A, = A;cos’ o + Agsin® a

Normalized Frequency® Vi = pkng o(24,)""
Principal Dielectric Constant
Principal Profile Height

Anisotropy

V, = pk ny,w(2Ay)1/2

E[I’(x, y) = EIII,(:O[I - 2A1f1(x7 y)] I= 1a3
A= (1 - efa/fein)/2 I=1,3
81y = (1 — enfen)/2, LJ =13

°k = 27/A; p is the dimension of the core region.
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Table 2. Modal Parameters®

Polarization

Parameters

y (Guided)

x (Radiation)

Propagation constant B

Bw

Core parameter U, = p(R*ep00 ~ By )" U, = p(k*€cs,c0 — B
Cladding parameter W, = p(B) — klepa)” Q= p(FPera — B
Normalization constant e 1R (@)eH.@Q)) = N,5@Q. — Q)

Y2 = U2+ W5 U2+ Q2=V5 Ul =

Modes constructed by this method are orthogonal to
each other to first order in A and 8. For higher-order
perturbations B, is complex, Egs. (14) are not Hermitian
operator equations, and the set of eigenmodes e, is not
mutually orthogonal but has a biorthogonal relationship
with the modes of the transpose equations of Egs. (14)."

B. Solution of the Approximate Field Equations
We are interested primarily in calculating the leakage loss
resulting from the anisotropy, and so we must obtain the
imaginary part of the propagation constant. If we as-
sume an i-polarized zeroth-order mode, the first-order
correction to the propagation constant S, is the expecta-
tion value of the coupling for the zeroth-order mode and
can be obtained from Egs. (14a) and (14¢) with the use of
standard perturbation theory. It can be shown that 8,
is real. We then must obtain the second- order correction
to find the loss. Multlplymg Eq. (14d) by e(m and using
the orthogonality of e(w and e (lz)z to e((l)i, we arrive at’
_ 1 eiiPien)  €iiPy eu>]>]
Bur 2,8(1)0 [B(m (e((g)iz> + @ (g)i2> > (15)

where we use the symbol (g) to denote an integral of g(x, )
over the x—y plane. As is discussed in Section 1 and in
Appendix A, only coupling to degenerate radiation modes
of the orthogonal polarization leads to loss, so that only
the third term in Eq. (15) contributes to the imaginary
part of B;. An integral expression for e(L first given in
Ref. 1, is discussed in the context of the present analysis
in Appendix A. It is shown there that using the integral
expression for e j, given by Eq. (Al.4), in Eq. (15) leads to

* e Pyed)
, oo <
gin = 2Bmo 2N,Q ey Poo B“‘, 16)
v2 0 Bwo > B

where By, = kn; ., e(((;zj(Q,v) is the j-polarized LP radiation
mode satisfying B0, = Buo, and N, and Q;, defined in
Table 2, are the normalization constant and the cladding
parameter of the radiation mode, respectively. The limits
to the validity of this expansion are discussed in Subsec-
tion 2.C after a simplified form of the coupling coefficient
is derived.

C. Simplification of the Coupling Terms (e {) P;e ;)

The expressions for the coupling terms that are necessary
for the evaluation of Eq. (16), given by Egs. (11), are obvi-
ously complicated. In this section we develop relations
that will both simplify the calculation and yield physical
insight into the leaky modes. The simplified coupling co-
efficients illustrate more clearly the dependence of the

Vyzaam/Ay sin® a + U,% when B(y) =

B(x).

leakage rate on the material anisotropy 63, the profile
height A, and the angle a between the optical and the
waveguide axes, without evaluation of the coupling inte-
gral or detailed information about LP modes. The trans-
formed coupling coefficient, which involves the modal
fields only in the region of the spatially varying refractive
index rather than in all space and does not require the
spatial derivatives of the modal fields, often yields more
accurate results than does direct application of Eq. (16)
when approximations to the modal fields are used.

We assume that the dielectric tensors of the waveguide
media are of the form given in Egs. (3) and (4); that the
orientation of the principal axes is the same throughout
the structure; and, in addition, that €, < €, ., 1.e., that
the media are negative uniaxial. Since the x-polarized
modes are the slow modes, only the v-polarized modes
exhibit leakage. Thus in evaluating Eq. (16) we take
i=yandj = x. Any of the expressions derived under
these assumptions can be applied to positive uniaxial
media by interchanging the coordinates x and y.

Under these assumptions, leaky modes do not exist when
a = 0. Anisotropy in the x-v plane emerges when o # 0,
and leakage begins when «a exceeds a threshold value ay,
as we discuss in Section 3. In planar waveguides the cou-
pling that leads to the leakage is attributable exclusively to
the third terms on the RHS's of Egs. 111b) and (11¢). In
two-dimensional guides all three terms on the RHS’s of
Egs. (11b) and (11c) are nonvanishing. but the third terms
generally dominate, as is discussed in Section 4. There-
fore we focus our attention on these dominant terms and
present some results for the other terms in later
sections. Retaining only the most important terms in
Eq. (11c), we have

'S Se 10)

0 0 ,

<e((y;yPyxe((x:x> = $<e N )e?:f . an
) 10

As we know, e(,), and e,,,. satisfy the homogeneous forms
of Egs. (10). For convenience we list them again as follows:

(V2 + K€, — B.sve . =0, (18a)
(V2 + k%, — B el =0. (18b)

For the radiation mode that is degenerate with the guided
mode, i.e., B(;jo = B.z«. it can be readily derived from
Eq. (18b) that

ce

u =

5 ) O€:x
(V.2 + ke, — B.40) = - k%) mg' (19)

61

Multiplying Eq. (19) by e} .. and Eq. (18a) by e(),, sub-
tracting, and integrating over the x~y plane, we obtain
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ae de
(0 XX
(e - ety )~ —(Sepets) 2o

Making use of Eq. (20) and a relation

(€ — €,) = (€}, — €ig)sin® @ =~ —¢,, tan « (21)

derived from Egs. (4), we find that

de D Jde
(0) Toxy xx 0 ,0) Y},
<e(y)y €yz ox =cot a ax € ()€ (x)x (22)

Combining Egs. (12a), (16), (17), and (22), we obtain the
relatively simple form for the imaginary part of the propa-

gation constant:
0 0 >
dx (y)y (x)x

2

mp2A, cot? o

<
g B € ((%y ) N, B Bth’
v 0 Biyo > B
(23)

where e(( is the radiation mode that is degenerate with

(2y and By, is given by Eq. (A7), with j = x. Equa-
tion (23) is derived under the assumption that the me-
dium is uniaxial.

With Eq. (23) it can be shown that the perturba-
tion expansion in Egs. (13) is valid, in the sense that
lp*BuoBiunl << 1 and |B2| << |Bnl, where B,y is the
first-order correction to B, and the first-order correc-
tions to the modal fields are much smaller than the LP
basis modes, as long as the waveguide is weakly guiding
and the media are weakly anisotropic, i.e., as long as
A, A3 << 1 and 85 << 1. Many of the waveguides used
in integrated optics are strongly asymmetric, violating the
weak-guidance condition at one interface. It is shown in
Section 5 that the perturbative approach is still adequate
for such waveguides.

3. SYMMETRIC STEP-PROFILE PLANAR
WAVEGUIDE

Despite the existence of exact solutions for the step-profile
planar waveguide,”? it is useful to apply the present ap-
proximation technique to this case, both as a test of the
method and to develop simple closed-form expressions for
the dependence of the loss on various waveguide parame-
ters. The results that are obtained for the step-profile
planar guide are prototypical of those that are obtained
for more complicated structures in Sections 4 and 5.

We assume a waveguide of the form shown in Fig. 2,
with a step profile df/ox = 8(x + p) — 8(x — p), where p
is the half-thickness of the guiding layer. Since af/ox
is odd, the imaginary part of the propagation constant
given by Eq. (23) is nonzero only when the product of the
y-polarized zeroth-order mode e(m and the degenerate

x-polarized radiation mode e{J), is odd. Ife y)y is even, the
expressions for the LP modes, e, and e(),, given in
Egs. (A2.1) and (A2.2), can he used in Eq. (23) to find

Bz = [4B(oA:” cot® a]

o ( U,%/V,? ){ sin? U, 04
T+ uyw,) @i + 2edees U] @Y
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where @., U,, U,, and W, are modal parameters that are
defined in Table 2, and V, is the normalized frequency for
the y polarization that is defined in Table 1. Note that
this expression contains three factors, the first of which is
independent of the modal parameters, the second of which
depends only on the parameters of the guided mode, and
the third of which depends only on the parameters of the
radiation mode. It will be seen that similar forms hold
for the more complex waveguides that are discussed in
Section 4. For odd e((gg ,,» the imaginary part of the propa-
gation constant can be obtained from Eq. (24) by inter-
changing sin U, and cos U,.

Several basic features of the loss can be seen in Fig. 3,
where the power-loss coefficient, 28", in decibels per cen-
timeter, is plotted against a for a waveguide with the
same parameters as those given in Fig. 6 of Ref. 2. The
loss vanishes for a that is smaller than a threshold angle
ay,, rises steeply to a maximum, and then rolls off slowly
with a series of similarly spaced minima. Quantitative
description and qualitative understanding of these phe-
nomena are facilitated by rewriting the expression for the
loss as a product of a smooth envelope function g (shown
by the dashed curve in Fig. 3) and a positive definite oscil-
latory function h, which is of order unity except in special
cases to be discussed later in this section. Thus
B(m gh, where g and A are given by

W,U,? Q
4A.% cos® a5 T 5
¥ 1+ 2

g = Boyp 0 v+ W)U » (25)

o < ay

a > oy

sin? U,

h [(Q.2/U.B)sin® U, + cos® U,] (26)

The basic features of the envelope function are the
threshold angle below which the loss vanishes, ay,; the
maximum value of the loss g,, which occurs at an angle
a,; and the slow decrease with increasing o up to @ = /2,
where the envelope vanishes. For angles smaller than
au, By, the propagation constant of the guided LP mode
e((g)y, is larger than B, so that no x-polarized radiation
modes are degenerate with the y-polarized guided mode,
which then propagates without leakage. When a > ay,
By > B, degenerate radiation modes exist, and the
y-polarized mode is leaky. Within the range of angles

n (0 d
anx

Ny fx, co

I_$_nX,CJ.
"dyx, co

ny IIIIIIIII-II:_Lny’ co
l---[------- nylcl
L -
P X

Fig. 2. Example of a symmetric step-profile planar waveguide
and definitions of the refractive indices.

i
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Fig. 3. Loss coefficients for the lowest-order mode of a symmet-
ric step-profile planar waveguide, in decibels per centimeter, as a
function of @ (solid curve), calculated with Eq. (24). The dashed
curve is the envelope function defined in Eq. (25). The half-
thickness of the guiding layeris p = 3 um, the vacuum wavelength
A = 0.6328 um, the refractive indices are ni . = 2.281 and
n3c = 2.174, and the profile heights are A; = 0.0005 and
Ag = 0.002. The parameters of the refractive indices are chosen
to be the same as those used in Fig. 6 of Ref. 2.

where degenerate radiation modes exist, the magnitude of
the leakage depends, according to Egs. (16) and (17), on
the square of the product of €, and an overlap integral
between the degenerate modes. At large angles the leak-
age is small because of the sin 2« dependence of e,,, while
for small angles the loss peak results from a trade-off be-
tween the increase in €,, and the rapid decrease in overlap
integral with a. The overlap is large for small a because
the waveguide is nearly isotropic; and, in an isotropic
waveguide, degeneracy between a guided and a radiation
mode can occur only as the guided mode approaches cut-
off. For fixed A,, g decreases as V, increases. When the
profile height is much smaller than the anisotropy, g is
proportional to A,2A, /55" for fixed V.

Using the definitions of the modal parameters given in
Table 2, we can obtain the threshold angle ay, from the
expression for By, in Eq. (A7) [taking j = x in Eq. (AT7)].
We find that

A, W2
12 Y Y
= _— 3 27
S <1531,c1| Vy2>a—ach @7

where (W,/V,)? is only a function of V, and is denoted con-
ventionally as b(Vy).* Both 83,4 and A,/(V,)* are inde-
pendent of a, but V, and thus W, are functions of . If A,
and A; are equal, V, is independent of «, as is the RHS of
Eq. (27); therefore a;, can be expressed in closed form.
Otherwise, both sides of Eq. (27) are functions of a.,, and
ay, can be obtained only numerically. As b(V,) = 1, ay, is
small when the profile height is small compared with the
anisotropy but can approach 7/2 when A, approaches 83, .
a, can be derived if we set the derivative dg/da = 0.
Assuming that (@, — am) << ay and A, << 83,0, we get

@ { L 2B 20 +[B+ 20" + 4oK]1/2}
20k a=atn

(223

(28a)

where

(28b)
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The second term in Eq. (28a) can be approximated rea-
sonably well by 1/3(1 + «). Using this approximation, we

. obtain the maximum value of the envelope function by

substituting «, into the expression for g given in Eq. (25),
which results in

8p = YB(0A:031,a, (29a)
where
_ 9VE (1 — B)(1 + x)*? ] _
[ [(Vy\/z? T 1@ + 30°G + 50 Jacan (290)

vis 0.46 at V, = 0, decays as V, increases, and can be ap-
proximated by 0.785/V,® when V, >> 1 and A, = A,. The
last two factors in Eq. (29a) show a linear increase with
the anisotropy and the profile height when V is fixed.
Comparing the expression for g, with that for g obtained
from Eq. (25), and using the expressions for U, and @,
given in Table 2, we find that as the anisotropy increases,
the peak of the envelope increases, but the envelope de-
creases at large a, i.e., the loss becomes peaked in the
small « region.

The oscillatory function h [Eq. (26)] is related to the
properties of the radiation mode that is degenerate with
the guided mode. As a increases, the denominator in the
expression for h is generally of order unity, so that the
nearly periodic minima in the leakage are due primarily
to the sin? U, factor in the numerator. These minima can
be understood either in a ray picture, where the loss van-
ishes when the radiation transmitted on successive re-
flections interferes destructively,” or in a modal picture,
where the loss vanishes according to the transformed
overlap integral [Eq. (23)] when the magnitude of the
x-polarized radiation mode at the core—cladding interface
vanishes. The condition for the occurrence of a mini-
mum is U, = mm, where m is an integer. While these
minima are equally spaced in U,, they are not in general
equally spaced in «, because of the nonlinear dependence
of U, on a (see Table 2). If A, << 83,4, we can use the
approximate expression for U, in Table 2 to obtain the an-
gular separations between the minima as

Oy — Ay
=c{m[l — m - V)?I? - (m — D[1 - *'m?*)*?*}, (30a)

where ¢ is independent of « and is given by

1'r< A_v )12
c=—|— .
Vy 631.@

Noting that V,/A,"® ~ pB(,y0, we see that the spacing is in-
dependent of A, if the thickness of the waveguide is fixed.

Exact solutions for the modal fields and a transcenden-
tal equation for B that is solved numerically are presented
in Ref. 2. It can be shown that, to first order in A and
8, the exact solution for 8™ deduced from Eq. (26) of
Ref. 2 and the perturbative result obtained here are iden-
tical {except when the degenerate radiation mode is just
above the cutoff of an odd guided mode, i.e.,, when V, =
(1/2 + m)mw]. The approximate values for the loss that
are presented in Fig. 3 are indistinguishable on the scale
of the graph from the results obtained from the exact
analysis of Ref. 2.

Figure 4 shows the losses of two waveguides with the
same V, and &, but with different A (for simplicity, we

(30b)
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Fig. 4. Loss of the lowest-order leaky modes for two symmetric
step-profile planar waveguides with the same normalized fre-
quencies V = 1.4. The refractive indices in the film for both
waveguides are chosen as ni. = 2.281 and ns = 2.174. The
profile heights, assumed to be the same for ordinary and extraor-
dinary polarizations but different for the two waveguides, are
0.0005 for the solid curve and 0.002 for the dashed curve. The
wavelength is A = 0.6328 um.

choose A; = Aj; therefore A, =A,=AandV, =V, =V),
and A << 8. For waveguides with fixed V and 83, Eq. (27)
indicates that the threshold angle a, is proportional to
the square root of A, Eq. (29a) shows that the peak of the
envelope increases linearly with A, and it can be deduced
from Eq. (25) that the envelope function g is proportional
to A%2, a result that is consistent with the results shown
in Fig. 4.

While estimates of 8™ based on the envelope function g
are generally valid for @ > ag, in the vicinity of the first
loss peak the oscillatory function 2 can have a significant
effect on the magnitude of the loss in certain cases. If a
zero of h occurs near ag,, the peak of the loss is reduced
and the location of the peak shifts slightly. If @, — 0
and V; —» (m + 1/2)7, it can be seen from Eq. (26) that
h — ». The calculated loss then diverges, and the pertur-
bation method clearly is no longer valid. This result is
consistent with the exact results of Ref. 2, which show
that in this limit pB™ is of order unity, so that the loss is
extremely large and the perturbation method can be ex-
pected to break down. In the context of the present analy-
sis these conditions correspond to the degeneracy of the
guided mode with a radiation mode that is just at cutoff.

Figure 5 illustrates the losses of two waveguides with
the same p and 83 but different A (again, A, = A, = A,
and V, = V, = V) and therefore different V. From Fig. 5
we can see that the losses for A = 0.002 are generally larger
than those for A = 0.0005 except in the vicinity of the first
loss peak, and the minima of the two losses occur at the
same angle. The magnitude of the loss for a # a, is
dominated by the A? scaling of g that can be seen from
Eq. (25), and the positions of the minima follow from
Eq. (30). The threshold angle a.,, given by Eq. (27),
varies only with W, for waveguides with fixed p, so that
the smaller ay, for the waveguide with smaller A is ex-
pected. For a = ay,, the magnitude of the loss can
be calculated by using the limiting form of & =~ tan? V
obtained from Eq. (26) with @, << 1. In this limit,
gh ~ yV? tan® V for fixed p, so that the smaller peak loss
for the waveguide with larger A can be seen from
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yVZ tan? V = 7.04 for A = 0.002 and yV? tan® V = 0.012
for A = 0.0005. For large V the limiting form yV? —
0.785/V is convenient.

4. OTHER EXAMPLES OF WEAKLY
GUIDING WAVEGUIDES

A. Asymmetric Step-Profile Planar Waveguides

Most waveguides that are used in practical applications
are strongly asymmetric. In this section we consider the
behavior of asymmetric waveguides but keep the assump-
tion of weak guidance at both interfaces. In Section 5 we
consider the extension to the case of one weakly guiding
and one strongly guiding interface.

The form of the step-profile asymmetric planar wave-
guide considered in this section is illustrated in Fig. 6,
where it is assumed that n,q < Ny and 3f/ox = (A.s/
A)8(x + p) — 8(x), with p the thickness of the wave-
guide. Ifkn, . < Bp < kng e (which is usually the case
for small o, especially when « is near the threshold angle),
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Fig. 5. Loss coefficients of the lowest-order leaky modes for two
symmetric step-profile planar waveguides with the same half-
thickness p = 2.039 um. The refractive indices of the wave-
guides (solid and dashed curves) are the same as those of the
waveguides (solid and dashed curves) in Fig. 4.
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and if we use the expressions for LP modes ()}, and e},
given in Egs. (B6) and (B9) and their normalization con-
stants (e((ggyz) and Ny, given by Egs. (B7) and (B12), re-
spectively, Eq. (23) for the loss becomes

[(AyZ/Ayl)l/zUx/‘]xZ - (AxZ/Axl)l/ZSin(Ux _ ¢x1)]2

B(l;‘;2 X Qx2[1 + ‘/xZZ/QxZZ COSZ(Ux - ¢x1)]
(31a)
where
= 2 UyZ/VyZ2 .
X = (4B(pAnly; cot oz)[1 T WW,) + W) (31b)

Notice that, following the notation of Refs. 15 and 16, the
characteristic dimension p, used in the normalized fre-
quency V, is the full thickness for asymmetric waveguides
and the half-thickness for symmetric waveguides.

If Bo < knga, the radiation modes propagate in both
cladding regions and for each propagation constant two
kinds of radiation modes exist, so that Eq. (23) becomes a
sum of two terms. Using Eq. (B13) for the two types of
radiation mode, we obtain
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However, with weak-guidance and weak-anisotropy as-
sumptions, approximate solutions are possible. Here we
consider step-index fibers, as they yield simple results and
are prototypical of other index profiles. Such step-profile
anisotropic fibers can be obtained experimentally, for
example, by growth of organic-crystal cores in glass capil-
laries® or by diffusion of claddings in lithium niobate
fibers.'”® A typical step-profile circular waveguide is
sketched in Fig. 8.

Snyder and Ruhl! have studied the case of a step-profile
fiber whose axis lies along one of the principal axes of the
dielectric tensor.! In such a waveguide €, = 0, and only
the structural coupling terms contribute to the loss. In
this section we consider the loss in fibers when e,, # 0 and
compare it with the loss in the cases in which €,, = 0.

Even when €,, # 0, the approximate Egs. (14) have
closed-form solutions. Coupling terms that are due both
to €,, and to structural coupling contribute to the total loss.
As a consequence of the orthogonality of the radiation
modes involved in these two cases, the two contributions
add without interference. The contribution to 8™ from
the €,. # 0 coupling term, which couples the lowest-order

({(AyZAxl)/[AyleZ(l + FmZ)]}I/Z B (AxZ/Axl)uzcos(Ux B ¢fm))2

Pon = x 5 @il + (V) (QuDsin®(Us — ) + (Qu/QuL + (Vii?/QuP)(Fn2/1 + ALY

(32)

where the F,,, parameters in the expressions for the ra-
diation modal field, are given by Eq. (B15) and ¢, =
cos[1/(1 + F,%)Y.

While the form of the expressions for the loss for an
asymmetric waveguide, Egs. (31a) and (32), is substan-
tially more complicated than that for a symmetric wave-
guide, Eq. (24), the essential behaviors of these waveguides
are similar. Figure 7 shows the loss for an asymmetric
waveguide whose parameters are the same as those of the
symmetric waveguides shown in Fig. 5, except that A,; =
A1 = 0002 and A, = A, = 0.0005 (again, A; = A;, and
thus A, = A,). We can see that, except in the vicinity of
a4, the envelope of the loss for the asymmetric guide falls
between the envelopes of the symmetric waveguides, and
the oscillations of the loss are weaker for the asymmetric
waveguide. The behavior of the envelopes could be an-
ticipated from the first factors in Egs. (31a) and (32), y,
which contain the product A,;A,,. It can be shown that
(A2 /AU, /Vig > (AL2/A)Y? is generally true when
knx,cu < B(y)O < knx’clz. When B(y)O < kn,,,cn, the magni-
tude of one of the F,, [which could be either F; or F;
depending on the sign of sin(2U,)], is smaller than 1/2,
the loss from the coupling to the mode with the smaller
F, dominates, and (A,3A,1)(An/AL)° > 1 + F,? for this
smaller F,,. Therefore the oscillatory function repre-
sented by the third factor in Egs. (31a) and (32) has no
zeros. The divergence in the calculated loss noted for the
symmetric waveguide when the guided mode is degenerate
with a near-cutoff radiation mode is also observed in
the asymmetric waveguide, and it occurs when V., =
cos M(A,2/A)Y + (1/2 + m)m, which is again the cutoff
condition for the mth guided mode.

B. Step-Profile Circular Fiber
Analytical solutions for the modes of anisotropic fibers ex-
ist only when the optical and the fiber axes are parallel.!”

y-polarized guided mode ef% with the x-polarized radia-
tion mode having cos ¢ symmetry, is

aW,’Jo*(U,)

VyZle(Uy) ][|P1|2J12(Ux)]- (33)

B(I,I)’I;Z = (B(y)oA,,2 cot? a)[

Equation (33) is obtained from Eq. (23) by the use of the
expressions for LP modes e()), and e{J), given in Eqgs. (B24)
and (B25) and the associated normalization integral and
constant, 5),”) and N,, given in Eqs. (B28) and (B29).
The definition of the coefficient p; is given by Eq. (B26).
Note that, as in Eq. (24) for the planar waveguide, the ex-
pression for the loss contains a factor that is independent
of modal parameters, one that is dependent only on the
guided mode, and one that is dependent only on the radia-

tion mode.
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Fig. 7. Loss coefficient of the lowest-order leaky mode for the
asymmetric waveguide in Fig. 6, where p = 4.078 pm, A =
0.6328 um, ny . = 2.281, n3 = 2.174. A;; = A,; = 0.002, and
Azs = Ay = 0.0005.
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Fig. 8. (a) Birefringent fiber with radius p, (b) step-index pro-
files for the fiber.

When €,, = 0, e((?,;y couples only to the x-polarized radia-
tion mode with sin(2¢) symmetry, and the result for g™,

first given by Ruhl and Snyder,® is

- W, R(U,)
Bl = (ByoA:A,) [TZ—V—;;J;(;—(@]

6.. A 6,. U, 2
x {lpzl [— S gy + 2= MJZ(U,E)]} :

ayx Ax 6yx JO(Uy)
(34a)
where in our case

axz 2

— = —cot’ a, (34b)
8yx

S _ 1 s

I 1 - cot’a. (34c)

yx

The total loss for €,, # 0 is then the sum of the two contri-
butions, Egs. (33) and (34a).

As can be seen from Egs. (33) and (34a), the major dif-
ference between the ¢,, # 0 and €,. = 0 cases arises from
the first factor in each equation. The loss for e, # 0 is
larger by A™! unless a approaches /2, as is borne out by
Fig. 9, which compares the loss coefficient that is due to
nonvanishing off-diagonal elements of the dielectric ten-
sor with that resulting from structural coupling. The pa-
rameters of the waveguide are chosen to be the same as for
one of the symmetric planar waveguides in Fig. 5 (A, =
A, = 0.002), with the radius equal to the half-thickness of
the symmetric planar waveguide.
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Comparing Fig. 9 with the loss coefficient for the sym-
metric planar waveguide with A, = A, = 0.002 as shown
in Fig. 5, we find that the loss in the fiber resembles closely
the loss in the planar waveguide. However, ay, is smaller,
which can be expected from the smaller b in the fiber for
fixed V, and from the expression for ay, given by Eq. (27),
and the locations of the maxima and the zeros are shifted.
It can also be shown that, for fixed waveguide parameters
A, VA, = A, = AV, =V, = V), the envelope of the loss in
the fiber is smaller than that in the symmetric waveguide
when V < 1.1, is larger when V > 1.1, and is approxi-
mated by 1.17¢ when V >> 1, where g is the envelope
function for the loss in a symmetric planar waveguide as
given by Eq. (25).

As was the case for the planar waveguide, the loss coef-
ficient for the anisotropic fiber becomes extremely large
when @, — 0 and the first antisymmetric mode is near
cutoff. This behavior is a result of the factor |p,J* in
Egs. (33) and (34a), where p,, defined in Eq. (B26), is pro-
portional to 1/J;-;(V;) and hence diverges when V, — 2.405,
which is the cutoff condition for the first antisymmetric
mode. This divergence in |p;| leads to a divergence in the
loss coefficient unless €,, = 0.

D. Symmetric Linear-Profile Waveguide

Thus far we have compared several types of waveguide,
but all have had step profiles. In order to determine the
effect of grading the refractive-index profile, we consider
an analytically tractable case, the symmetric linear-index
profile, illustrated in Fig. 10. This profile is defined by

flx) = {llxl/p

where i = x,y, and p is the half-thickness of the wave-
guide. The LP modes for this profile are presented in Ap-
pendix B. In order to have a closed-form expression for
the loss, we assume here that A; = A;, and hence A, = A,.

For this profile, the overlap integral in Ea. (23),
<(aﬁ,/ax)e§2;ye((2;x>, reduces to [ (}e((fzxe(“y);ydx. Rather than
carry out this complicated integration, we transform the
coupling coefficient to a simpler form that involves inte-

x| <p (35)
lx| > p
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Fig. 9. Loss coefficient of the lowest-order leaky mode for the
fiber shown in Fig. 8. The solid curve represents the loss that is
due to nonvanishing off-diagonal dielectric tensor element e,
while the dashed curve shows the structural loss that exists even
when ¢€,, = 0. The waveguide parameters are chosen as
p = 2.039 um, A = 0.6328 um, nyc = 2.281, nae = 2.174, A, =
Az = 0.002.
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Fig. 10. Symmetric linear-index profile, where the half-thickness
of the guiding layer is p.

gration only over the cladding region. Since e((giy andel),

are degenerate, it can be derived from Egs. (18) that
((Exx - €yy)e((2;xe((2;y> =0. (36)

As we have assumed that A; = A, (€., — €,,) is indepen-
dent of x and can be taken out of the integral in Eq. (86), it
follows that

eOed: = 0. 37)

Therefore the integral in the guiding layer is equal in
magnitude and opposite in sign to the integral in the sub-
strate, which is easier to evaluate because of the simpler
form of the fields in the latter region. With this approach,
and using the LP modes given in Egs. (B30) and (B31), the
expression for 8™ given in Eq. (23) becomes

) 1)
im 4 Ax2 t2 Sy (
Bz = (4B co a)liz(e((%f)

Q. [s./(1) + W,s, (1)
X [(Uf - U;)z]{s;zm ¥ Qfsﬁ(l)} ' (38a)

where s;,i = x,y are combinations of the Airy functions
defined by Eq. (B33), (e((S;f) is given in Egs. (B37), and s,
is the derivative of the function s;.

Similarly to those in Eq. (24) for the symmetric slab
waveguide, the first three factors of Eq. (38a) behave like
the envelope function g given by Eq. (25), and the last fac-
tor is comparable with the oscillatory function A given by
Eq. (26). To compare the two envelope functions, we use
the relation between U,? and U,? given in Table 1 and find
that the ratio of the envelope function for linear profiles to
the envelope function for step profiles is

2

&Llin . Ux,step
- 2 2\2
8step (Ux - l]y )lin

2
Uystep Ay

%2631,& Sil’l2 a

Ay

‘13,2531,00 sin2 [44 ( > ’ (38b)
where we neglect the difference in the amplitudes of the
bound-mode fields at R = 1, i.e., we take sy2(1)/2(e(((y);y2) ~
U,/ V,)/1 + 1/W,). The difference comes from the
overlap integral in Eq. (23), which is equal to the value of
e, - e). at the interface in the cases of a step profile but
is a weighted average of this product when the profile is
graded. From Eq. (38b), we conclude that waveguides with
linear profiles are less leaky than waveguides with step

profiles when V285, /A >> 1, such as for_Ti:LiNb03 wave-
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guides; but, if V283 /A is of order unity, as is the case in
a proton-exchanged waveguide, the sizes of the losses in
waveguides with linear profiles and step profiles are com-
parable. The above statements are verified by Figs. 11
and 12, which show the plots of loss versus a for linear and
step-profile waveguides with the same A and V, where
V (821/A)?2 is 14 in Fig. 11 and 0.95 in Fig. 12. Although
the above conclusions are drawn for the case of linear pro-
files, we expect a similar trend for all graded profiles.

The linear graded profile again shows high loss when
Q. — 0 and s./(1) = 0; the latter can be shown to be the
cutoff condition for the first antisymmetric mode.

5. EXTENSIONS OF THE METHOD

A. Positive Uniaxial Waveguides
In the previous analysis in Subsection 4.D, we have
assumed that the media are negative uniaxial. For a
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Fig. 11. Loss coefficient of the lowest-order leaky mode for the
linear-profile waveguide shown in Fig. 10 (solid curve). The
dashed curve shows the loss coefficient for a step-index waveguide
with the same parameters, which are p = 2.039 um, A =
0.6328 um, n; . = 2.281, n3e = 2.174, A; = A3 = 0.0005. In
this case V8;32A,712 = 14, and hence the step-profile waveguide

is much more leaky than the linear-profile waveguide, as shown
in Eq. (38b).
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Fig. 12. Losses for a linear-profile (solid curve) and a step-profile
(dashed curve) waveguide. The parameters for the two wave-
guides are the same as those of the two waveguides in Fig. 11,
except that p =1 um and nz, = 2.279. V85V2A;712 = 0.95 in
this case, and thus the size of loss for the linear-profile is compa-
rable with or larger than that for the step profile.
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negative uniaxial waveguide as shown in Fig. 1, only the
y-polarized modes are leaky, and the loss appears when o
exceeds a threshold angle ay,. Analogously, for positive
uniaxial waveguides, only the x-polarized modes are leaky,
and the corresponding threshold angle for leakage is the
same as the one in negative media given by Eq. (27). All
the expressions for the leakage rate that are derived with
negative uniaxial guides can also be used for positive uni-
axial guides, provided that the coordinates x and y are
interchanged. Thus, the loss in positive uniaxial wave-
guides behaves in the same way as in negative uniaxial
waveguides with comparable anisotropy and index profiles.

B. Strongly Asymmetric Waveguides

The results in Sections 3 and 4 were derived under the
assumptions of weak guidance and weak anisotropy. In
many cases of practical interest one or both of these as-
sumptions are violated to some degree. It is interesting
to investigate the possibility of extending the analysis to
those cases. In this section we discuss the case of a
strongly asymmetric planar waveguide for which the
weak-guidance assumption is violated at one interface,
and then we touch on the question of strong birefringence.

A common type of waveguide is constructed by diffusing
a dopant into a thin layer at the surface of a substrate,
with air, or perhaps a low-index-of-refraction buffer, serv-
ing as the superstrate. Such a waveguide is shown sche-
matically in Fig. 13. The thickness of the waveguide is p,
and the profile heights at the interface between the guid-
ing layer and the substrate, A,; and A,,, result from dif-
fusion and are thus small; the sizes of A,; and A, the
profile heights at x = 0 (the air-film interface), are of
order unity. The material anisotropy, as in the previous
cases, is assumed to be weak everywhere. In this case the
only deviation from our previous model is the relaxation
of the weak guidance assumption at one interface.

While A << 1 is used in the previous analysis as a suffi-
cient condition for the validity of the perturbation expan-
sion (except for special points where the guided mode is
degenerate with near-cutoff radiation modes), a necessary
condition for valid approximation is only that the coupling
terms on the RHS’s of Egs. (10) be small. For the planar
waveguide shown in Fig. 13, the coupling terms given by
Eqgs. (11) reduce to

_ ] x| 0 €y 0 (- €
P,e, = — 1—6— Ay A ee——lnexx , (39a)
ox €.,/ 0x 9x €,, OX

- . i €y —
P, e, =i o (Eu ey) , (39b)
_ k €, 0
Pyx ex = ZB EZZ (exx ex); (390)
P, e, = 0. (39d)

Examining Eqs. (39), we find that all coupling terms are
small except the second term on the RHS of Eq. (39a), the
expression for P,.e,. Therefore this term should be added
to the RHS of Eq. (14a) for the zeroth-order x-polarized
mode. The zeroth-order modes of a step profile obtained
in this way are the ordinary TM modes of an isotropic
waveguide, given in Eqgs. (B17) and (B20).
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After moving the second P,.e, term to the zeroth-order
equations, we can repeat the derivation leading from
Eqgs. (18) to Eq. (23) and find the second-order correction
to By, to be

€xx,co aﬂc (0) >2

e
Bim B wpzsz cot? a< €x 0X el (x)x
2 = Po
() Y. < (0) 2) qu sz

»y

> (40a)

where N, is defined by
<e(x)x*(Q12’)e 9 (Qx2)> q26(Q12 - Qx2,) . (40b)

Note that, with this definition, f(x) is no longer of order
unity, having a maximum value A,;/A,;. In deriving
Eq. (40a) we have not assumed any particular form for the
index profile, and hence it can be applied to graded as well
as to step profiles. Comparing Eq. (40a) with Eq. (23),
the loss for A << 1, we find that the only difference is that
the overlap integral is modified by €. /€. in Eq. (40a).
We need to check the criteria for the validity of the per-
turbation eigenvalues, i.e., |Bul, Bzl << Bpo. It can be
shown that the first-order correction to B, By is pro-
portional to o ) Pe L),) and therefore vanishes in this case
because Pyyefg = 0. The real and imaginary parts of
By are of the same order, and thus we check only the
imaginary part. From Eq. (40a) we see that, in order to
prove that |B(nz| << B(yyo, We need to demonstrate that the
product A (af,/ax)e((%ye(x)x in the overlap integral is much
smaller than unity. On the small A side the product is
small, while on the other side, where A is of order unity, if
it can be shown that the transverse fields are small in re-
gions where the index of refraction is changing, then the
product is small. We now specialize to the case of step-
profile waveguides. For planar waveguides with step-
index profiles, the index of refraction varies only at the
interfaces between the guiding layer and the substrates or
superstrates. In addition, because the guide is strongly
asymmetric, U, << V,;, U, << V,,, and hence W,; and W,
can be approximated by V,; and V;;. In these limits it can
be shown from Egs. (B6) and (B20) that, at fixed V, and V,,
the magnitude of the transverse fields, e((gﬁ at x = 0 (where
A is of order unity), is proportional to (A;3/A;)"? (notice
that e{)) has been set to be of order unity at the small A

AN
0y,codyx,co<< 1

nx'coAx2<< 1 J/

Ny

Ny.co
e — n,
n
y.co :
: Ny, cofx1
f Ny coly1
ny,coAy2<< 1
17 Nx,c01,Ny,cl1

1 -

-p 0 X

Fig. 13. Index profile for a strongly asymmetric planar wave-
guide, where the superstrate is air. Aq, A,s << 1, but A,y and Ay,
are of the order unity.
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interface), so that A,(3f; /ax)e(‘ggye((gx is approximately pro-
portional to (A,24,2)"? and is small there.

So far we have proved that the perturbation analysis
can be applied in the case of strongly asymmetric step-
index waveguides, with one extra term retained in the
zeroth-order equations for the x-polarized LP modes. To
calculate the loss we use Egs. (B6) and (B20) for e{)),
and e((ggx and use the normalization constants given by
Eqgs. (B17) and (B27) in Eq. (40a), which becomes

. UW,,
im 4 Ax 2 t2 Y Y 2
Bz = (4Byodz2’ cot’ a) [—Vyzz(l n Wyz)]n

(1 -y tsin U,)?

» 4
QL + V/QF)cos” Ui )
where
1 €xx,co €xx,cll ‘/yZUx
===y D : 41
K 2 (@cr,cll eac:c,co) V«:ZZ ( b)

As was the case for the weakly guiding waveguide to first
order in A;; and 83, the results of the perturbation analy-
sis agree with the exact results from Appendix C.

Now we compare Eq. (41a) with its counterpart for sym-
metric planar waveguides, Eq. (24). Equation (41a) looks
similar to the loss for a symmetric waveguide with profile
heights equal to A.; and A,; and half-thickness equal to p,
except for the last oscillatory factor and the factor »? in
the envelope. 7 is of order unity at o = 0 and increases
monotonically with . When 83 3> A, Ay, m =~ (A,285)"?
sin a/A;; >> 1, so that the loss coefficient of the strongly
asymmetric waveguide can be considerably larger than
that of a weakly asymmetric waveguide.

The envelope becomes flat in strongly asymmetric
guides because m increases with o and hence lifts the
envelope. 7 is independent of A,; and A,; in the limit
A, Ay = Ay, Ay, since, from the definition of U, given
in Table 2 and the definitions of V), and A, in Table 1, it
can be shown that U, does not depend on A,; and A, in
that limit and V,3/V., is always independent of A,; and A,;.
The other factors in the envelope of the loss given by
Eq. (41a) are also independent of A,; and A,;; thus the en-
velope of the loss does not depend on the large profile
heights. 7? is also the ratio of the envelope of the loss
given in Eq. (41a) to g, the envelope function for symmetric
waveguides given by Eq. (25). It has been mentioned be-
fore that this ratio is proportional to 83; sin® a/A;;, which
is of order unity when the anisotropy is comparable with
the small profile heights, but it is much larger than unity
when 83 >> Aj,, unless « is small.

There are two terms in the numerator of the last oscilla-
tory factor in Eq. (41a); the first one is a constant and
arises from the integral over the region near x = 0, where
A is of order unity, and the second one is an oscillatory
function of a with a magnitude %~ and comes from the
integral over the region near the small A interface. At
small a the two terms are comparable in magnitude. As
a increases, the first term becomes increasingly impor-
tant and the oscillation becomes weaker, until, if 65 >>
Ajs, the oscillation disappears. Figure 14 shows the loss
coefficient of a strongly asymmetric waveguide, with air
as the superstrate. We see that the oscillations decrease
as a increases, and the envelope is quite flat as a function
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of a, compared with the loss for symmetric waveguides
given in Fig. 4.

We can reach the following conclusions: For a strongly
asymmetric waveguide, the loss is insensitive to the large
profile height. When the anisotropy & is of the same
order as the small profile height A, the size of the loss for
a strongly asymmetric waveguide is comparable with that
of a symmetric waveguide with a profile height equal to A.
When & >> A, the leakage rate for the strongly asymmet-
ric waveguide is larger than that of the symmetric waveg-
uide by a factor of & sin® a/A. In the latter case burying
the waveguide with a buffer layer between the air and the
guiding layer will reduce the loss substantially.

For a general waveguide with one large index step, we
would expect the behavior of the coupling to be similar to
that of a step-index waveguide. The results of perturba-
tion calculations should be accurate for asymmetric planar
waveguides if A is small at least on one side, if Eq. (23) for
the coupling coefficient is replaced with the modified
form, Eq. (40).

Waveguides with highly birefringent cores could also
occur in practice. In the case of strong anisotropy but
weak guidance, the perturbation method is still useful.
The modal fields and the propagation constant can be
evaluated by methods similar to those that lead to Eq. (40),
incorporating modified forms of the P,e; terms. These
results will be discussed in a future publication.

5. SUMMARY

Guided modes of anisotropic waveguides are often leaky
because of coupling to degenerate orthogonally polarized
radiation modes. We have extended the calculation of
these losses that was first presented in Ref. 1 to include
waveguides with arbitrarily oriented dielectric tensors.
When a principal axis is not aligned with the waveguide
axis, the loss arising from the off-axis components of the
dielectric tensor is much larger than the structural loss
present in two-dimensional anisotropic waveguides that
have a principal axis aligned with the waveguide axis.
We have derived a simplified expression for the loss, which
shows that the coupling occurs in regions where the re-
fractive index is spatially varying. Application of these
results to step-index planar waveguides, for which exact

1000
100 f
10 F
it
R
0.01 f
0.001 |

LOSS (dB/cm)

0.000t F

L 2 : i i 1 L "

0
0 10 20 30 40 50 60 70 80 90
Q. (deg)
Fig. 14. Loss coefficient of the lowest-order leaky mode of the
strongly asymmetric waveguide shown in Fig. 13, where p = 6 um,
A =10.6328 um, ni = 2.281, n3 . = 2.174, ny g2 = 2.2799,
nj3ce = 2.1697, and Nien = N3 el = 1.
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solutions are available, shows that the approximate results
are accurate in the limit of small anisotropy even for
strongly asymmetric waveguides, as long as one of the in-
terfaces is weakly guiding.

Examples drawn from planar and fiber waveguides il-
lustrate general trends for the dependence of the loss on
the profile height A, the angle between the optical axis and
the waveguide axis a, and the anisotropy 8. For symmet-
ric planar waveguides, the loss is proportional to A? cot? «
For strongly asymmetric waveguides, the loss is insensitive
to the large-profile height and proportional to the square
of the small-profile height A, Compared with a symmet-
ric waveguide that has the same A, the loss of a strongly
asymmetric waveguide is much larger when A << § but is
of the same order when A = 8. The loss for a birefringent
fiber with « # 0 is of the order A™! larger than that of a
fiber with & = 0 and is comparable with that of a symmet-
ric planar waveguide that has similar profile height and
anisotropy. The loss of a planar waveguide with a lin-
early graded refractive-index profile is much smaller than
that of a step profile when 2mp8Y2/A >> 1 but is com-
parable when this quantity is of order unity.

APPENDIX A: INTEGRAL EXPRESSIONS
FOR THE COUPLED FIELDS AND THE
PROPAGATION CONSTANT

Snyder and Ruhl' approximate the j component of a pre-
dominantly i-polarized leaky mode (i and j are set to be y
and x, respectively) by the integral

pknjq
e = [ ae,@dq, (a1
0

where e(}),(Q;) are the continuum solutions to the homoge-
neous Eq. (14a). To find the modal coefficients a,, one
first substitutes the form given in Eq. (Al) for ef}fj in
Eq. (14b), then multiplies Eq. (14b) by e{3,*(@,"). With the

orthogonality relation
€,"@Qe(3,@Q) = N,8@Q; - Q), (A2)

a, is obtained as

No(Bijpg = Ban')
and the j component of the leaky mode becomes
((11))J _ _fknj’°l Pz(eg%j*(Qj)Ppe((g»e((%J'(Qj) dB(j)O,q, (A4)
2Q; Ny(B(joq — Bn)

where the relation d@; = —p®B(j),,dB0,,/@; has been
used. In the expression for B, given by Eq. (15), only the
third term can result in an imaginary component. Thus,

by taking e(}; in the form given in (A4), one is led to

f olel}, Q) Preci)l o ]
o 2Q;N,Bing ~ Bao)

Bim — __~}__ Im[
wz 2Buple ((3)12>
where the relation

G E%j*(Qj)Pjie ((?));) ={ &*P i€ (J) j (QJ)>* (A6)

is used. Equation (A6) resuits from the requirement that
the perturbative modes be orthogonal to each other and is
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correct to lowest order in A and 8. Therefore the function
to be integrated in Eq. (A5) is real. If By > kn,q, the
integral in Eq. (A5) is real since the contour is on the real
axis only, while for By < kn, ., deformation of the con-
tour around the pole B, = Buo gives rise to an imagi-
nary part of the integral. Thus we can define a threshold
value for B, B, as

B = k(ejj,cl)l/z = knj,c], (A7)

such that for B > B, the imaginary part of the propaga-
tion constant vanishes, while for B0 < B the imaginary
part of the propagation constant is given by

? @) Piei)
280 2N, Qie (D)

The correction to the modal field that comes from the
coupling between e((gﬁ and the i-polarized radiation modes
can be obtained in the same way, and the result i 1s same
as Eq. (A4) with j replaced by ;. However, this e(t), will
not introduce the loss to the mode. To see this, we can go
through a similar process from Egs. (A5)-(A8) and find
that there is no pole in the contour of the integral in
Eq. (A5) if j is replaced by i, because no i-polarized radia-

tion mode can be degenerate with e(gz

B = v Bowg = Bao. (A8)

APPENDIX B: LP MODES

The LP modes e((ggy and e((ggx are the solutions of Eq. (14a).
In this appendix we present the expressions for LP modes
of several model-guiding structures. In these expressions
anormalized transverse coordinate, x, is defined by x = x/p
for planar waveguides, and R is defined by R = r/p for
waveguides of circular cross section, where pis a character-

istic dimension of the guiding region that is defined below.

1. Symmetric Step-Profile Planar Waveguide

A symmetric step-profile planar waveguide is shown in
Fig. 2. An even-guided LP mode of the y polarization has
the form'®

o _ JcosUyx) x| <1
Wy {cos(v;)exp[—qur  ENEHES
and an odd x-polarized radiation mode is given by
e, = sin(U, x) x| < 1
EL (U)Sln[Qx(lsaicrll(;j) + ¢.] 7> 1
(B2)

where ¢, satisfies the relation cot(¢,) = U, cot(U.)/Q, and
the eigenvalue equation for the guided mode is

W,
tan(U,) = 7: (B3)
The normalization integral and constant are
1
€ =5 <1 + W) (B4)
V.2
N, =22 [1 + 970U )] (B5)

where p is the half-thickness of the symmetric waveguide.
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2. Asymmetric Step-Profile Planar Waveguide
For an asymmetric planar waveguide as illustrated in
Fig. 6, the guided LP mode e, is given by

(9)y
Ve -
Va exp(~W1x) x>0
v = _
ety = Uyz cos(Uyx + ¢a) 0>x>—1> (B6)
Ed
exp[Wya(x + 1)] x< -1

where ¢, = cos (U, /V,;), and the normalization integral
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where

g; tan(U, + ¢m)

and ¢, = cos [1/(1 + F,>)"?]. There are two types of
mode, with F,,, m = 1,2 representing two orthogonal solu-
tions chosen in such a way that in the limit of a symmetric
waveguide even and odd radiation modes result. The
above requirement yields the following expressions for F;
and Fs:

tan(¢,’) = — (B14)

szz cos(2U;) + (Q:cz/Qxl)Vxl2 * [sz4 + 2(Qx2/Qx1)Vx12Vx22 cos(2U,) + (Qx22/Q112)‘,x14]1/2 ,

(B15)

V.o” sin(2U,)

F1,2 =
is given by
2
0 _ 2V 1,1
=———14+—+—}> B7
<e(y)y ) 2 Uy2< Wyl VVyZ ( )

where p is the thickness of the asymmetric waveguide.
The eigenvalue equation for this mode is given by

U? — WaW,e

cos(U,) = ViV,
Yl vy

(B8)

There are two kinds of radiation mode. The first kind
decays in one of the cladding regions (in the following ex-
amples we choose x > 0 as the side where the modes decay)
and oscillates in the other. These modes exist for &n, 4 <
Bpo < kn. e (we have assumed that n, . < n,q2) and
have the forms

(0)

e(x)x
exp(—W,x) x>0
_|sinU,x + ¢n) -
= @) 0>x> -1,
Sin(Ux - d’xl) Sin[Qx(E + 1) + ¢x2] X< 1
- : : x -
sin(¢.1) sin(¢.2)
(B9)
where
W,
cot(du) = — 7 (B10)
U,
COt(¢x2) = - COt(Ux - ¢x1) . (Bll)
QxZ
The normalization constant of the above mode is
7p Vi’ Veo
2 = —2— Uz [1 + -@ cos*(U, — é:1) |- (B2)

The other kinds of radiation mode, oscillatory in both
superstrates and substrates, exist when By < kn, . and
have the forms®

where for F; the positive sign is used and for F, the nega-
tive sign is used. The corresponding normalization con-
stants are

2
Via

QxZZ
2 2
+ Qxl 1+ &1_5 F m - .
QxZ Qxl 1+ F m

3. Strongly Asymmetric Step-Profile Planar Waveguide

In strongly asymmetric waveguides the profile height A is
small on one side only, as is shown in Fig. 13. The guided
LP modes of the TE polarization can be deduced directly
from those for weakly guiding waveguides by taking the
limit A5, A2 << A4y, A, The expression for the modal

field, Eq. (B6), remains unchanged, while the normaliza-
tion integral, Eq. (B), becomes

Ny = %’(1 + F,,,Z)[l + =2 sin®(U, + dm)

(B16)

P Vz2 1
i’ = Py E]y—f(l + VV;>’ (B17)
and the eigenvalue equation, Eq. (B8), becomes
1%
cos(U,) = —-2- (B18)
Ve

The LP radiation modes of the TM polarization, e((fgx, are
not solutions of Eq. (18b) anymore; instead they satisfy

3 dln e,
(V2 + ke — BroDels = —a(eéﬂix py" ) (B19)

as is discussed in Section 5. Using U,,W,,, V., << V.4, and

cos(@.1x) + &Fm sin(@.1x)

Qxl
e, ={cos(U.;x) + F, sin(U,%)
cos[@.a(x + 1) + ¢.'] p

[COS(Ux) - Fm Sin(Ux)] COS(¢ /)

x>0

0>x> -1,

(B13)
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V.1 = W,,, we derive from Eq. (B19)

0)
e(x)x

—= exp(~W,X) x>0

€xx,cll Vx1

U, cos(U,x + ¢.3) _

= ———— 0>x> -1
Vi cos(dys)

exx,co sin(Ux) COS[sz(x + 1) + ¢x4] E < _1

€xxcl1 c0s(¢z4)

€xx,co

(B20)
Ny,

2 2
TP €xy o 9
=————11+ cos“(U,) | B21

2 €xx, cll [ Qsz ( )] ( )

where ¢.; and ¢4 are determined from the continuity of

the derivative of e(s), at the two interfaces, obeying

€xx,co VVxl

B22
€xxcll U ( )

tan{e.s) =

tan(e,,) = (B23)

Notice that e(x)x is not continuous at the large A interface,
but ene((x;x is.

4. Step-Profile Circular Fiber
For the circular fiber depicted in Fig. 8, the y-polarized
guided LP mode has the form!

)
MG: (}) R<1
o _ | S 7
€y = ’ (B24)
sz(UR)G @ R>1
K,W,) ~°
and the x-polarized radiation mode is given by
o _ {Plil,(UxR)Glx(fﬁ) R<1
@ [9@QR) + ¢, HPQ.R)G,($) R >1
(B25)

where the constants p; and g, are

= —[U i1 UDHL Q) — QI (UIH D (Q)],
(B26)

@ = 5 Pu[Uedi (U@ — Qi U)n(@)],
(B27)
and Gi(¢) = cos(l¢p) for even modes, G,(¢) = sin(lp) for

odd modes. The normalization constants are
V.2 JAU, )
W Jo*(U, )’

€9 = (B28)

2
P
N,=t ’ (B29)
q Qx

where t = 1,2 for [ = 1 and [ = 0, respectively, and p is
the radius of the circular waveguide.
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5. Symmetric Linear-Profile Planar Waveguide

A symmetric linear-index profile is shown in Fig. 10. An
even-guided mode of the y polarization for waveguides
with such a profile has the field expression®

x| <1

|x| > 1 (B30)

@ — {sy(} |) _
O s, (Wexp[-W, (x| — D]
and the modal solution for an odd x-polarized radiation
mode is

e, = x/|x[se(|x]) ]f|<1,
i - sin[Q.(x] — 1) + ¢,] _
x/|x[s.(1) sin(é.) x| >1
(B31)
where
cot(e,) = Q—sxé(-l()T)’ (B32)
2 2

Sj(i) = AL[(E — %)WW?{I + dJBlli<E _ %)wz/sjl ,

J==xy, (B33)

and Ai(x) and Bi(x) are Airy functions. The eigenvalue

equation for e((%y is given by

e W2
{22 + ()

W, W2 (W2
V2/3 [AL(V4/3> + dth(TZ/:J]- (B34)

The coefficients d; are given by

AL ( U. Z/V 4/3)
Bl ( U Z/V 4/3)
AL( U Z/V 4/3)

&= B UV (B36)

d, = (B35)

The normalization integral {¢(5),%) is
W, Ut 1
ey = p<Vz s,(1) + 3 v -250) - Tz y’(l)) W, L),

(B37)

and the normalization constant of the radiation mode
0)
e((x)x 18

_ T s,/ %(1)
No = ( (1) + RE ) (B38)

APPENDIX C: EXACT SOLUTION FOR
THE PROPAGATION CONSTANT OF AN
ASYMMETRIC PLANAR WAVEGUIDE

Marcuse® has given the exact solution for the propagation
constants and the modal fields of symmetric waveguides.
Following his procedure, we can derive the exact solution
for asymmetric waveguides. Here we list only the result
for the propagation constant, which satisfies the following
equation:

AD - CB =0, (Cy

where
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h, cot® g h 2
A= —M<cos U, _lng sin Uu> + M(cos U, -

Flexx,co 2 Uo erxx co

W.zl W’aZ G GZ W’Ol“’o2 .
B=-(2+22)2  + A A

< F, 7, ) U cos U, ( FE U sin U,

B p*k?h g cot® asin U,
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€xix,cll G “’el .
—_— = e]s C2
exx,co Fl Ue st U) ( )

; (C3)

Exx,coFlFZUo Ue

21,2 2 . 2
c_? k>h1hy cot? o sin U, N (ex,,,cn gWel + e“’dZEWez>cos U, + <1 G* € cl1€ax iz MIMZ>Ue sinU,; (C4)

Ea«:;\:,coFll F2 Uo

_ szzhz g Wa
T RU \R U,

Exx,co Fl Exx,co 2
p2k2h1
F on

sin U, + cos U0> + (cos U, -

- 2 2
F 1 F 2 exx,co Ue

Exx, cl2 E “722

— sin Ue> ; (C5)

exx,co F2 l]e

p is the thickness of the waveguide; % is the free-space
propagation constant; and F;,, G W,;, W,;, U,, and U, are
defined as in Marcuse’s paper:

UoZ = Pz(kzeil,co - Bz)’ (CG)
W2 = p*(B* — k’elvai), (€7
2 = 2l p2.r  _ a2 ain? €33c0 5
U, p’| kel o — B sin* a + ——cos’ a} |, (C8)
ell,co
W’eiz = p2|:32<sin2 a + ﬁcosz a) - k2€é3yc1i:| 5 (Cg)
€11,cli
F, = VVoi2 cot® o — pzkzeil,cli, (C10)
G = U2 cot? a + pkiely o, (C1y

and h; is defined as

hi = €1y,cW,® + €l iU (C12)
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