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Tandem chirped quasi-phase-matching grating
optical parametric amplifier design for

simultaneous group delay and gain control
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We present a broadband optical parametric amplifier design using tapered gain and tandem chirped quasi-
phase-matching gratings to obtain flat gain and group-delay spectra suitable for applications such as
ultrashort-pulse amplification and fiber-optic communication systems. Although a tapered-gain amplifier
consisting of a single chirped grating can provide constant gain over a wide frequency range, it cannot be
used to control the group delay across the spectrum. We propose controlling both the gain and the group
delay profiles using a two-stage amplifier configuration, in which the idler of the first is used as the input
signal of the second. © 2005 Optical Society of America

OCIS codes: 190.4970, 190.7110, 190.4410, 230.4320.
Optical amplifiers with broadband gain are impor-
tant for a variety of scientific and technological appli-
cations. In recent years, optical parametric amplifi-
ers (OPAs) have been used for the amplification of
femtosecond pulses,1,2 as they present several advan-
tages compared with laser amplifiers.

Quasi phase matching (QPM) allows operation at
any desired wavelength with the largest component
of the nonlinear susceptibility tensor.3 Another im-
portant advantage of QPM is the ability to tailor the
spectral properties of the nonlinear response through
the use of chirped gratings.

Although a single chirped QPM grating can pro-
vide a broad parametric gain bandwidth, it does not
influence the phase of the amplified signal and as
such does not provide the means to compensate for
material group-delay dispersion. To address this
problem, we propose a tandem-grating OPA that can
provide the desired gain and group-delay spectra.

The tandem OPA design is shown in Fig. 1. It
makes use of the fact that the signal and idler waves
propagate at different velocities inside the crystal.
Since the position of the perfect-phase-matching
point in a chirped QPM grating varies with fre-
quency, the idler wave experiences a frequency-
dependent group delay. By use of the idler of the first
amplifier as the input signal of the second, it is pos-
sible to introduce frequency-dependent group delay
to the idler output of the second, whose frequency is
the same as the initial signal wave. This controllable
group delay can be used to compensate for material
group-velocity dispersion. As will be explained in de-
tail below, the desired gain and group-delay spectra
can be achieved because we can engineer the position
of the perfect-phase-matching point and the local
chirp rate at that point simultaneously.

In our tandem OPA design the coupling strength
between the signal and idler waves is adiabatically
switched on and off at each end of each QPM grating.

This tapering alleviates the gain and phase ripple
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that would accompany any abrupt switching. Also, to
maintain a flat gain over a large bandwidth, we can-
not operate in the pump-depletion regime.

Here are some basic results on chirped QPM grat-
ings. The equations describing the spatial evolution
of a single frequency component vs of the signal and
its corresponding idler wave, vi=vp−vs, in the pres-
ence of an undepleted pump field at frequency v0 are4

dAs

dx
= igsxdAi

* expfifsxdg, s1d

dAi
*

dx
= − igsxdAs expf− ifsxdg. s2d

Envelopes As and Ai squared are photon fluxes.
The coupling strength is given by gsxd
= svsvi /nsnid1/2fdeffsxd /cguE0u, where ns and ni are their
refractive indices, deffsxd is the effective nonlinear co-
efficient (which is spatially switched on and off adia-
batically to prevent ripple in the amplification spec-
trum), c is the speed of light in vacuum, and uE0u is
the amplitude of the pump electric field. The wave-
vector mismatch between the three waves is Dk=Dk̃
−Kg, where Dk̃=k0−ks−ki is the intrinsic wave-vector

Fig. 1. Schematic representation of the tandem chirped
QPM design, showing the tapered coupling strength. S1,2
and I1,2 stand for signal and idler of the first and second

gratings, respectively.
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mismatch and Kgsxd=2p /Lgsxd is the position-
dependent wave vector associated with the QPM
grating of period Lgsxd. This results in an accumu-
lated phase mismatch fsxd=e0

xDksx8ddx8, where the
input plane of the grating is at x=0. We consider
gratings where Kgsxd and therefore Dksxd are slowly
varying, monotonic functions of position. We denote
the rate of change of the grating wave vector, or chirp
rate, by k8sxd=dKgsxd /dx=−dDksxd /dx.

Optical parametric amplification in a chirped QPM
grating, as described by Eqs. (1) and (2) is analogous
to three-wave convective parametric instabilities in
inhomogeneous plasma, the theory of which was
given by Rosenbluth5 and used to calculate the
single-pass gain of chirped-grating OPAs.6 The signal
power gain, obtained through a WKB analysis, is
given by the Rosenbluth amplification factor5:

Gsvsd = expH2E
xtp1

xtp2

fg2 − sk8/2d2sx − xpmd2g1/2dxJ
= expF2pg2sxpmd

k8sxpmd G . s3d

In these equations, xpm is the perfect-phase-matching
point, defined by Kgsxpmd=Dk̃svsd, and the integration
is carried out between the two turning points xtp1,2
=xpm±2g /k8, which are the limits in which we have
significant amplification. This expression indicates
that the waves stay in phase and interact coherently
over a distance given by 4g /k8 around xpm. Inside the
interaction region the gain rate is spatially nonuni-
form, decreasing from the uniform medium value as
one moves to either side of xpm. In contrast, in a uni-
form grating the waves would grow exponentially
with increasing interaction length.

Equation (3) describes the amplification of an infi-
nitely long or tapered-gain grating, and as such does
not account for gain ripple caused by the hard edges
of a finite-length grating. This ripple originates from
the fact that before and after the amplification region
the amplitudes of the interacting waves oscillate be-
cause of the nearly phase-matched interactions. As
such, nearby frequencies have small but different
preamplification and postamplification factors, which
are superposed on the essentially constant gain pro-
vided by the main amplification region, resulting in a
rippled spectrum. This ripple can be reduced by adia-
batically turning off the coupling strength at the
edges of the grating.

Since the length of the amplification region is small
compared with the grating length, most of the accu-
mulation of phase occurs before and after the gain re-
gion, where the waves propagate at their respective
velocities essentially independently of each other.
The total group delays at a particular frequency can
be approximated by

tssvsd =
L

v sv d
s4d
s s
tisvid =
xpmsvsd

vssvsd
+

L − xpmsvsd

visvid
, s5d

where vs and vi are group velocities of the signal and
idler waves, respectively.

A major limitation of amplifiers using a single crys-
tal is the variation in group delay caused by material
dispersion. For applications such as ultrashort-pulse
amplification it is desirable to minimize the amount
of group-delay dispersion introduced by the amplifier.
This control can be obtained through the use of a tan-
dem pair of gratings, in which both the gain and the
group-delay spectra are engineered, as shown below.

The gain of the tandem OPA is approximately
equal to the product of the gains of each grating as
given in Eq. (3), provided they are both large. This
leads to the following expression for the total gain in-
volving the frequency-dependent perfect-phase-
matching points in both crystals, xpm,1 and xpm,2:

ln Gsvsd = 2pg2svsdS− UdDk̃

dv
U

vs

D−1

3SUdxpm,1

dv
U

vs

+ Udxpm,2

dv
U

vs

D . s6d

The grating functions must be such that the perfect-
phase-matching points corresponding to the edges of
the bandwidth are situated at the ends of the grating.
These requirements allow elimination of the two un-
knowns contained in Eq. (6) [namely, the ratio
lnsGd /g2 and the integration constant]. The total
group delay is obtained with Eq. (5):

Fig. 2. (a) Amplification spectrum of the tandem QPM
grating OPA. The total gain between 680 and 800 nm is
1.53107, with a root mean deviation error of 9%. Dashed
curves, with tapering of the gain coefficient. Thin curves,
without tapering, showing the gain ripple. (b) Group delays

t1,2 of each grating.
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tsvsd =
xpm,1svsd + fL2 − xpm,2svsdg

vssvsd

+
fL1 − xpm,1svsdg + xpm,2svsd

visvsd
, s7d

where L1 and L2 are the lengths of each grating. Fi-
nally, after xpm,1svsd and xpm,2svsd are obtained, the
actual grating profile can be determined with phase-
matching condition Kgfxpmsvsdg=Dk̃svsd.

For example, consider two periodically poled
crystals of stoichiometric lithium tantalate,7 whose
effective nonlinear coefficient8 is 2/p315 pm/V. Our
pump laser is at 532 nm with an intensity of
1 GW/cm2, and the amplification bandwidth ranges
from 680 to 800 nm, corresponding to a transform-
limited pulse duration of approximately 10 fs. We de-
termine the grating profiles by solving Eqs. (6) and
(7). We are free to choose the grating lengths as long
as their ratio is preserved; we choose lengths of 5.0
and 2.2 cm, respectively. Figure 2(a) shows the am-
plification spectrum of both gratings and their prod-
uct, obtained from numerical integration of Eqs. (1)
and (2) using a fourth-order Runge–Kutta method.
The total gain of the amplifier between 680 and
800 nm is 1.53107 with a root mean deviation error
of 9%. Without tapering, the gain ripple of each crys-
tal has a magnitude of 6% and 8% around the aver-

Fig. 3. (a) Maximum group-delay variation across the am-
plification bandwidth. (b) Phase-matching period versus
position for three tandem pairs, corresponding to amplifi-
cation bandwidths of 90, 175, and 270 nm, identified by la-
bels (1), (2), and (3) in (a).
age value in the center of the passband and up to
20% and 25% at the edges, respectively. The ripple
can be kept below 0.1% by tapering the coupling co-
efficients according to the rule

gsxd

gmax
= a + b 3 tanhSx − l1

w1
D 3 tanhSL − x − l2

w2
D ,

s8d

where a and b are constants chosen so that gs0d
=gsLd=0 and with the values l1= l2=w1=w2=0.02L.
Figure 2(b) shows the group delay of each grating;
their sum is essentially constant over the entire
bandwidth.

It is instructive to compare a tandem grating de-
sign with a single grating to see to what extent the
group-delay dispersion can be compensated when the
bandwidth is increased. Figure 3(a) shows the group-
delay variation across the spectrum as a function of
bandwidth of a tandem design whose total length is
fixed at 5 cm compared with that of a single, linearly
chirped QPM grating of the same length. As long as
the bandwidth is not larger than 175 nm, it is pos-
sible to completely cancel the material dispersion to
all orders. For larger values of the bandwidth some
group-delay dispersion must be tolerated. Figure 3(b)
shows the phase-matching period of each pair of grat-
ings as a function of position for three different band-
widths.

In this Letter we have described an OPA design us-
ing tapered coupling strength and tandem chirped
QPM gratings to obtain controlled gain and group-
delay spectra. In subsequent papers, additional
analysis combined with numerical simulations will
give a more detailed description of tapering options
and address pulse distortion, transverse beam over-
lap effects, pump depletion, and self-focusing.
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