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Estimating the off resonance thermal noise in mirrors, Fabry-Perot interferometers, and delay
lines: The half infinite mirror with uniform loss

N. Nakagawa
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~Received 22 September 2000; published 21 March 2002!

We present an analysis comparing the thermal noise in Fabry-Perot and delay-line interferometers with
half-infinite mirrors. With a center to center spot spacing of at least twice the Gaussian beam spot size a delay
line produces significantly less phase noise than a comparable Fabry-Perot interferometer for the case of half
infinite mirrors at frequencies where test mass thermal noise usually dominates. When the delay-line spots
overlap substantially the delay-line produces approximately the same noise as the Fabry-Perot interferometer.
For a single bounce these results agree with those based on the method of Levin.
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I. INTRODUCTION

Several large interferometric gravitational wave detect
will begin regular astronomical observations over the n
few years; Laser Interferometric Gravitational Wave Obs
vatory LIGO ~USA! @1#, VIRGO ~French-Italian! @2#, and
GEO 600~British-German! @3#. The fundamental sources o
noise in the first-generation LIGO interferometer will b
seismic noise filtered through the mirror suspension at
frequency (f ,50 Hz), shot noise at high frequency (f
.200 Hz), and thermal noise in the fused silica interfero
eter mirrors at intermediate frequencies (50 Hz, f
,200 Hz). Gillespie and Raab calculated this last no
source using a normal-mode expansion of the displacem
in the mirrors @4#. More direct approaches to the proble
have been developed by Levin@5#, Nakagawaet al. @6#, and
Bondu, Hello, and Vinet@7#. These nonmodal approache
often lead to simpler expressions for model problems, of
ing greater insight into the parameters determining the m
nitude of the thermal noise. They also serve as the basis
more efficient computational methods than the modal me
ods.

The analysis in our previous paper@6# began with the
general fluctuation dissipation theorem

^ui~rW1!uj~rW2!&v5
2kBT

v
Im x i j

v~rW1 ,rW2 ;c!, ~1!

which relates the cross-spectral density of the displacem
ui of a body to the elastic response functionx i j

v of that body,
wherekB is the Boltzmann constant,T is the temperature,rW
is a surface point, andc5ci jkl is the generalized stiffnes
tensor, which can be divided into a real and an imagin
part:

ci jkl ~v!5ci jkl8 ~v!2 ic i jkl9 ~v!. ~2!

Specifically, the response functionx i j
v(xW ,rW) is a dynamic

Green’s function at frequencyv satisfying the traction-free
boundary condition, relating the displacementui at volume
0556-2821/2002/65~8!/082002~7!/$20.00 65 0820
s
t

r-

w

-

e
ts

r-
g-
or
-

ts

y

point xW resulting fromTj (rW)5Tjk(rW)nk , whereTi j is a stress
tensor at the surface pointrW, andnW is the unit vector normal
to the surface. It is shown in Ref.@6# that in the quasistatic
approximation the fluctuation dissipation theorem can
written

^ui~rW1!uj~rW2!&v'
2kBT

v E
V
dV@]kx l i

v~xW ,rW1 ;c8!#cklpq9 ~v!

3@]pxq j
v ~xW ,rW2 ;c8!#, ~3!

where we replaced the full Green’s function with the lossle
Green’s function and hence eliminate the imaginary part
the stiffness tensor from the argument of the Green’s fu
tion. Moreover, when the loss function is the same for
components of the stiffness tensor and we consider the
sistatic limit, we can rewrite Eq.~3! as

^ui~rW1!uj~rW2!&v5
kBT

v
f~v!$x i j

static~rW1 ,rW2 ;c8!

1x j i
static~rW2 ,rW1 ;c8!%. ~4!

The loss function of the material,f~v!, can be factored in
this fashion only for the special case where, for each co
ponent of the stiffness tensor, the real and imaginary p
are in the same ratio so thatci jkl9 (v)5f(v)ci jkl8 (v). We
derive Eq.~4! from Eq. ~3! after integration by parts, using
the traction-free boundary condition, the field equation, a
the uniformity of the loss. We see that Eq.~4! is valid only
when all the above assumptions are satisfied, including
single loss function assumption. In more general cases s
as localized lossy layers, Eq.~4! will have a modified form,
still derivable from the general quasistatic formula, Eq.~3!.

In the initial large interferometric gravitational wave d
tectors the lowest-frequency normal mode of the test ma
will be above 6 kHz, while the highest frequency at whi
the test mass thermal noise is larger than the shot noise
be approximately 200 Hz. Thus, the quasistatic approxim
tion will be valid over the range of interest for practic
applications. Here, the Green’s function approach is part
©2002 The American Physical Society02-1
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larly advantageous compared to the modal approach, w
requires summing over many highly detuned modes. In
paper we discuss half-infinite mirrors, for which the qua
static approximation is better described by comparing
time required for elastic waves in the test mass to cross
laser beam spot to the period of the highest-frequency gr
tational wave for which test mass thermal noise is of inter

In this paper we derive expressions relating the cro
spectral density of the mirror displacements to the ph
noise imposed on a Gaussian light beam reflected fro
mirror, on a beam reflected from a Fabry-Perot interfero
eter, and on a beam passing through a delay line. We
evaluate these three expressions for the spectral densi
phase noise treating the mirrors as half-infinite in extent
with uniform loss. For the case of a single bounce from
mirror we obtain Levin’s@5# result as corrected by Liu an
Thorne@8#.

II. PHASE NOISE OF A GAUSSIAN BEAM
FROM A SINGLE MIRROR REFLECTION

A mirror at finite temperature will have a surface which
distorted by Brownian motion. The electric field at a planz
and timet associated with an incident TEM00 Gaussian light
beam of 1/e field radiusw reflected from a mirror with sur-
face distortionsdz(x,y,t) can be written, in the near field, a
a Gaussian beam with a small phase shift that is a functio
the position on the mirrorrW5(x,y) and the timet,

Eref~x,y,z,t !5E0e2urWu2/w2
ei ~kz2v0t !e2ikdz~x,y,t !. ~5!

This reflected field just after the mirror can be decompo
into a linear superposition of Hermite Gaussians,

Eref~x,y,z,t !5E0ei ~kz2v0t ! (
n50

`

(
m50

`

An,mHn~&x/w!

3e2~x2/w2!Hm~&y/w!e2~y2/w2!. ~6!

We need only retain the term in this expansion that co
sponds to the TEM00 mode (n5m50) because, in the cas
of a gravitational wave detector with Fabry-Perot arms, o
this mode will be resonant, while for a delay-line system
spatial filter at the output of the interferometer will sele
only this spatial mode. Equating Eqs.~5! and ~6!, and ap-
proximating the complex exponential in Eq.~5! to first order
in dz(x,y,t), the integral projecting out the coefficient of th
TEM00 mode is

A0,0~ t !'11
4ki

pw2 E
2`

`

dxE
2`

`

dye22urWu2/w2
dz~x,y,t !,

~7!

which means that the phase shift after reflection from a m
ror is

w~ t !'
4k

pw2 E E dS e22urWu2/w2
dz~rW,t !, ~8!

where**dS5**dx dy.
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The autocorrelation function of the phase fluctuatio
generated by the random variabledz is

Rw~ t !5^w~ t !w~0!&, ~9!

where the notation̂ & denotes the statistical expectation o
erator, which can be evaluated usingw(t) from Eq. ~8! by
interchanging the order of the statistical averaging and s
tial integrations to obtain

Rw~ t !5
16

p2

k2

w4 E E dSE E dS8e22urWu2/w2
e22urW8u2/w2

3^dz~rW,t !dz~rW8,0!&. ~10!

The Fourier transform of the autocorrelation function of t
phase fluctuations induced by a single bounce from a mi
is the power spectral density of the phase noise,

Sw
single~v!5E

2`

`

dt eivtRw~ t !5E
2`

`

dt eivt^w~ t !w~0!&.

~11!

Inserting Eq.~8! into Eq. ~11! and noting that the Fourie
transform of the autocorrelation of the surface displaceme
is the cross-spectral density, we obtain for a body with u
form loss

Sw
single~v!5

16

p2

k2

w4 E E dSE E dS8e22urWu2/w2
e22urW8u2/w2

3^dz~rW !dz~rW8!&v . ~12!

Equation~12! is the desired result, relating the spectral de
sity of phase noise induced on a Gaussian beam by a si
mirror reflection at finite temperature to the elastic propert
of the mirror. Before evaluating this expression for the sp
cific Green’s function obtained for a half-infinite mirror, w
develop similar expressions for the cases of a Fabry-P
interferometer in Sec. III and a multipass delay line in S
IV.

III. PHASE NOISE OF A GAUSSIAN BEAM EMERGING
FROM A FABRY-PEROT INTERFEROMETER

Here, we generalize the noise formula~12! from the
single-bounce case to the light reflected from a Fabry-P
interferometer assuming the end mirror is a perfect reflec
i.e., has a unit power reflection coefficient (RE51), and the
input mirror has a power reflection coefficientRI . The field
reflection coefficient of the input mirror can the be written
r I5ARI , and the transmission in either direction through th
mirror is i t I where r I

21t I
251 for a lossless cavity. For an

incident fieldE0 the expression for the reflected field is,
usual@9#,
2-2
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Eref~ t !

E0
5r I2t I

2$eiwE~ t2t!1r Ie
i @wE~ t2t!1w I ~ t22t!1wE~ t23t!#

1r I
2ei @wE~ t2t!1w I ~ t22t!

1wE~ t23t!1w I ~ t24t!1wE~ t25t!

1¯%, ~13!

wherewE(t) and w I(t) are the phase shifts due to the e
and input mirrors, respectively, at timet, andt is the single-
pass transit time through the interferometer, i.e.,t5c/L,
whereL is the distance between the Fabry-Perot mirrors.
small fluctuations, the phase shifts are small, and thus
exponentials in Eq.~13! can be approximated by the firs
order expansion term. Arranging the resulting terms by ti
delay yields

Eref /E05r I2
t I
2

12r I
H 11 i (

n51,3, . . .
@r I

~n21!/2wE~ t2nt!#

1 i (
n52,4, . . .

@r I
n/2w I~ t2nt!#J . ~14!

Assuming that the sum over the phase shifts is still sm
we can determine to first order the overall phase in Eq.~14!,
and find that

w~ t !5~11r I !@DwE~ t !1Dw I~ t !#, ~15!

where

DwE~ t !5wE~ t2t!1r IwE~ t23t!1¯

5 (
n51

`

r I
n21wE„t2~2n21!t…

~16!

Dw I~ t !5r Iw I~ t22t!1r I
2w I~ t24t!1¯

5 (
n51

`

r I
nw I~ t22nt!.

With Eq. ~15!, the autocorrelation function of the phase no
is

^w~ t !w~0!&5~11r I !
2$^DwE~ t !DwE~0!&

1^Dw I~ t !Dw I~0!&%, ~17!

where we use the statistical independence of the fluctuat
in the two mirrors to eliminate the cross terms and assum
stationary statistics. By inserting Eqs.~16! into Eq. ~17!,
moving the expectation operator inside the summations,
Fourier transforming the autocorrelation function, we obt
the power spectral density of the phase noise
08200
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Sw
FP~v!5E

2`

`

dteivt^w~ t !w~0!&

5~11r I !
2H (

n51

`

(
p51

`

r I
n1p22eiv2~n2p!t

3E
2`

`

dt eivt^wE~ t !wE~0!&

1 (
n51

`

(
p51

`

r I
n1peiv2~n2p!t

3E
2`

`

dt eivt^w I~ t !w I~0!&J , ~18!

where we have used the Fourier shift theorem. Noting t
the Fourier transforms appearing in Eq.~18! are independen
of the double sums; they can be factored out of the sum,
direct consequence of the statistical stationarity. The in
grals yield the single-reflection phase noisesSw

E(v) and
Sw

I (v) for the end and input mirrors, respectively, accordi
to the definition ~11!. Summing the remaining series, w
find, after rationalizing the denominator and multiplying o
the terms, that

Sw
FP~v!5F ~11r I !

2

~11r I
2! GF12

2r I

11r I
2 cos~2vt!G21

3@Sw
E~v!1r I

2Sw
I ~v!#. ~19!

Equation ~19! is the first principal result of this pape
expressing the phase noise of the Gaussian beam eme
from a Fabry-Perot interferometer in terms of the input m
ror reflection coefficientr I , the transit timet, and the single-
reflection phase noisesSw

E(v) and Sw
I (v). Sincer I'1, the

denominator of Eq.~19! can be near zero whenvt5np,
corresponding to the constructive accumulation of the ph
noise at these frequencies, for which the surface fluctua
dz modulates the laser beam in resonance with the Fa
Perot response.

IV. PHASE NOISE OF A GAUSSIAN BEAM PASSING
THROUGH A DELAY LINE

The phase fluctuations for a beam passing through a d
line in which the light bounces between two mirrors, sa
pling a series of different points on each mirror at a series
different times, can be obtained by summing up a series
phase contributions for a single bounce as given in Eq.~8!,
with the time and space coordinates chosen appropriately
each bounce. More precisely, for a delay line in which t
beam bouncesN times at positionsrWn8 on the surfaceS8 of
the end mirror, andN21 times at positionsrW p8 on the sur-
faces8 of the input mirror, with transit timet between the
mirrors, the total phase noise can be written
2-3
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w~ t !5wE~ t !1w I~ t !5 (
n851

N

wE
single~rWn8 ,tn8!

1 (
p851

N21

w I
single~rW p8 ,tp8!, ~20!

where the second forms are obtained from the first by the
of the single-mirror phase function given in Eq.~8!, except
that it is generalized to a Gaussian beam centered on a p
rWn at a timetn ,

wsingle~rWn ,tn!5
4k

pw2 E E dS8e22urW82rWnu2/w2
dz~rW8,tn!,

~21!

and the definitions of the bounce timestn85t2(2n821)t
and tp85t22p8t.

The autocorrelation function for the phase is

^w~ t !w~ t8!&

5^wE~ t !wE~ t8!&1^w I~ t !w I~ t8!&

5K (
n851

N

wE
single~rWn8 ,tn8! (

n951

N

wE
single~rWn9 ,tn9

8 !L
1K (

p851

N21

w I
single~rW p8 ,tp8! (

p851

N21

w I
single~rW p9 ,tp9

8 !L
5 (

n851

N

(
n951

N

^wE
single~rWn8 ,tn8!wE

single~rWn9 ,tn9
8 !&

1 (
p851

N21

(
p951

N21

^w I
single~rW p8 ,tp8!w I

single~rW p9 ,tp9
8 !&, ~22!

where the first form of Eq.~22! takes advantage of the inde
pendence of the fluctuations on the two mirrors, and the s
ond uses the second form of Eq.~20!. Fourier transforming
the autocorrelation function, Eq.~22!, with respect to (t
2t8[T) yields the power spectral density of the pha
noise. To evaluate this quantity, consider a typical term,

On8n9
E [E

2`

`

dTeivT^wE
single~rWn8 ,tn8!wE

single~rWn9 ,tn9
8 !&

5S 4k

pw2D 2E E dS8E E dS9

3e22urW82rWn8u
2/w2

e22urW92rWn9u
2/w2

3E
2`

`

dT eivT^dzE~rW8,tn8!dzE~rW9,tn9
8 !&, ~23!

where in the second form we have used the single-mi
phase function as in Eq.~12! but with the necessary modifi
cation Eq. ~21!. Noting that tn82tn9

8 5t2t812(n92n8)t
and applying the Fourier shift theorem, we see that
08200
se

int

c-

r

On8n9
E

5S 4k

pw2D 2

ei2~n82n9!tvE E dS8E E dS9

3e22~ urW82rWn8u
21urW92rWn9u

2!/w2
^dzE~rW8!dzE~rW9!&v

5ei2~n82n9!tvSw
E~v,rWn8 ,rWn9!, ~24!

whereSw(v,rW1 ,rW2) is the cross-spectral density of the pha
fluctuations of Gaussian beams centered atrW1 and rW2 ,

Sw~v,rW1 ,rW2!

[
16

p2

k2

w4 E E dS8E E dS9

3e22urW82rW1u2/w2
e22urW92rW2u2/w2

^dz~rW8!dz~rW9!&v ,

~25!

which is an analog of Eq.~12! but generalized to two dis
crete laser-beam spots,rW1 and rW2 in accordance with Eq.
~21!. It is symmetrical under the interchangerW1↔rW2 due to
the Onsager theorem@10#. With these quantities the phas
noise spectral density for the end mirror is given by

Sw
E~v!5 (

n851

N

(
n951

N

On8n9
E

5 (
n851

N

(
n951

N

ei2~n82n9!tvSw
E~v,rWn8 ,rWn9!

5 (
n51

N

Sw
E~v,rWn ,rWn!12(

n52

N

(
q51

n21

cos@2~n2q!tv#

3Sw
E~v,rWn ,rWq!, ~26!

where the last line explicitly separates the equal-point te
for n85n9 and uses the aforementioned Onsager relation
simplify and reindex the double sum. Following the sam
procedure for the input mirror and combining with Eq.~26!
for the end mirror, we arrive at an expression for the spec
density of phase noise imposed on a Gaussian beam pa
through the delay line,

Sw~v!5Sw
E~v!1Sw

I ~v!

5 (
n51

N

Sw
E~v,rWn ,rWn!12(

n52

N

(
q51

n21

cos@2~n2q!tv#

3Sw
E~v,rWn ,rWq!1 (

n51

N21

Sw
I ~v,rW n,rW n!

12 (
n52

N21

(
q51

n21

cos@2~n2q!tv#Sw
I ~v,rW n ,rW q!.

~27!

Equation~27! is the second principal result of this paper.
2-4
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V. HALF-INFINITE MIRRORS WITH UNIFORM LOSS

A useful model system simpler to treat than mirrors w
realistic aspect ratios, but retaining much of the essen
physics, is a semi-infinite mirror@5#. In the next three sub
sections, we evaluate the cross-spectral density of the
placement noise for a single bounce from a mirror, for
flection from a Fabry-Perot interferometer, and for pass
through a delay line, Eqs.~12!, ~19!, and ~27!, respectively.
For each of these expressions we need the cross-spectra
sity of the displacement noise of the mirrors, as expresse
the fluctuation dissipation theorem in Eq.~3! or Eq. ~4!. The
essential input for these three calculations is the static ela
Green’s function for an isotropic half-space@10#,

xzz
static~rW82rW9!5

12s2

pE

1

urW82rW9u
. ~28!

When this expression is substituted into Eq.~4!, we obtain
for the cross-spectral density of the surface displacemen

^dz~rW8!dz~rW9!&v5
2kBT

v
f~v!

12s2

pE

1

urW82rW9u
, ~29!

where s is the Poisson ratio,E the Young’s modulus, and
rW85(x8,y8) is the position on the mirror surface.

A. Phase noise after a single bounce from a half-infinite mirror

Substituting Eq.~29! for the cross-spectral density of th
displacement noise into Eq.~12! for the phase noise after
single bounce from a mirror, we find

Sw
single~v!5S 32kBT

p3

f~v!

v

k2

w4D F ~12s2!

E E E dS8

3E E dS9e22urW8u2/w2
e22urW9u2/w2 1

urW82rW9uG .
~30!

The double surface integral can be performed explicitly
shown in the Appendix, yielding the result

Sw
single~ f !5

4kBT

p3/2

f~ f !

f

k2

w

~12s2!

E
. ~31!

This single-bounce result~31! agrees with Eq.~15! of Levin
@5# when corrected for an algebraic error found by Liu a
Thorne@8# as shown in their Eq.~59!. Note also that Levin’s
result is a single-sided spectral density for the displacem
noise and our result is a double-sided spectral density. M
over, our result is for the phase noise, which must be divi
by 4k2 to produce the result for the displacement noise.
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B. Phase noise after reflection from a Fabry-Perot
interferometer

Recall that Eq.~19! for the phase noise after reflectio
from a Fabry-Perot interferometer requires the single-bou
phase-noise spectral densitiesSw

E andSw
I , each given by Eq.

~31!,

Sw
FP~v!5F ~11r I !

2

~11r I
2! GF12

2r I

11r I
2 cos~2vt!G21

3@Sw
E~v!1r I

2Sw
I ~v!#. ~32!

This expression shows that the Brownian motions of the t
mirrors impose on the light-beam phase noise, which is
tered by the Fabry-Perot response function.

C. Phase noise after passing through a delay line

The phase-noise spectral density for a delay line recei
considerable attention from the gravitational wave interf
ometry group at the Max-Planck-Institute for Quantumopt
in Garching, Germany in the 1980s, where the potential
vantage of delay lines was recognized from experimental
sults on their 30-m interferometer, and was discussed qu
tatively in terms of a modal picture@11#. This work resulted
in a series of unpublished reports and is discussed briefl
Ref. @12# by the same group.

The complexity of the analysis for the delay line is co
siderably greater than that for a Fabry-Perot interferome
The point of departure is the evaluation of expression~27!
for the cross-spectral density of displacement noise in
mirror, which requires the two-point phase-noise correlat
function ~25! in place of Eq.~30!, i.e.,

Sw~v,rW1 ,rW2!5
32kBT

p3

f~v!

v

k2

w4

~12s2!

E E E dS8

3E E dS9e22urW82rW1u2/w2
e22urW92rW2u2/w2

3
1

urW82rW9u
. ~33!

Fortunately, these surface integrations can be performed
plicitly, as shown in the Appendix, yielding

Sw~ f ,rW1 ,rW2!5
4kBT

p3/2

f~ f !

f

k2

w

~12s2!

E
e2urW12rW2u2/2w2

3I 0„urW12rW2u2/2w2
…, ~34!

where I 0 is the modified Bessel function of the first kind
Substituting this expression into Eq.~27!, we obtain the final
result for the phase noise after passing through a delay
2-5
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Sf~ f !5Sf
single~ f !H ~2N21!12(

n52

N

(
q51

n21

cos@2~n2q!tv#

3e2urWn2rWqu2/2w2
I 0„urWn2rWqu2/2w2

…

12 (
n52

N21

(
q51

n21

cos@2~n2q!tv#e2urW n2rW qu2/2w2

3I 0„urW n2rW qu2/2w2
…J , ~35!

where we have used Eq.~31! to express the prefactor.

D. Comparison of a Fabry-Perot interferometer and a delay
line

Figure 1 compares the phase noise from a Fabry-P
interferometer to that of several delay lines using the sa
storage time for the Fabry-Perot interferometer as that p
posed for LIGO II @13#. The number of bounces used
compute the delay-line noise is the number of bounces
will produce the same phase variation of the light for a sin
soidal motion of the end mirror at frequencies well below t
bandwidth of the Fabry-Perot interferometer. The laser be
spots are all of 1/e field radiusw and are positioned on th
delay-line mirrors with their centers evenly spaced in an

FIG. 1. Comparison of the phase noise from a delay line an
Fabry-Perot interferometer. The solid curve~1! is for a 4-km Fabry-
Perot interferometer with an input mirror power reflectivity ofRI

50.97 and an end mirror power reflectivity ofRE51.00. Curves 2,
3, 4, 5, and 6 correspond to 4-km delay lines all with 130 spots
the end mirror and laser-beam spots of 1/e field radiusw in a pat-
tern with their centers on a circles of radiusR5w/3 ~2!, R52w/3
~3!, R55w/2 ~4!, R510w ~5!, and R520w ~6!, where w
53.5 cm, the spot size used for both mirrors of the Fabry-Pe
interferometer. The mirrorQ is assumed to be 33108 and the ma-
terial properties are those of sapphireE571.8 GP ands50.16.
However, we are treating sapphire as isotropic for the purpos
this illustration and assuming a single loss function.
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and lying on a circle of radiusR as shown in Fig. 1. As the
spot circle radius becomes comparable to the beam spot
on the mirrors, the phase noise from the delay line
proaches that of the Fabry-Perot interferometer. When
spots are largely overlapping, the phase noise for the d
line is still less than that of the Fabry-Perot interferome
between 40 and 175 hertz, after which the delay line
noisier. When the spots are not overlapping appreciably
thermal noise of the delay line is less than that of the Fab
Perot interferometer. However, in these calculations the s
tial correlation scale is the size of the light beams on
mirror. Any increase in the spatial correlation due to the
nite size of the mirrors is ignored in this calculation for
half-infinite mirror. Thus it seems likely that the noise in
delay line made from mirrors with a more realistic aspe
ratio would be larger than is calculated here. Evaluation
the thermal noise in a model system of finite transverse
mension is currently being undertaken to clarify this poin

VI. CONCLUSION

The primary results of this paper are the relations~19! and
~27!. They relate laser-beam phase noises to stochastic m
surface vibrations, generalizing the known single-reflect
result ~12! to a Fabry-Perot interferometer~19! and to an
optical delay line~27!, respectively. Specifically, the rela
tions facilitate evaluations of the phase-noise fluctuation c
relation of a Gaussian laser beam in terms of a two-po
cross-spectral correlation function of the mirror surface d
placements. In particular, when the surface fluctuation
dominated by the thermal excitation, one can calculate int
sic thermal noises of the laser-beam phase, with the hel
the fluctuation-dissipation relation@Eq. ~3! or ~4!#, for Fabry-
Perot interferometers and optical delay lines.

Section V presents example calculations of thermal no
for isotropic semi-infinite mirrors. The resulting expressio
are given in Eq.~31! for the single-reflection case, in Eq
~32! for a Fabry-Perot interferometer, and in Eq.~35! for a
delay line. Our results for a single bounce from a mirror a
basically the same results obtained by Levin@5#, Bondu,
Hello, and Vinet@7#, and Liu and Thorne@8#. Moreover, the
results obtained for the Fabry-Perot resonators are consi
with intuitive expectations. The comparison between
Fabry-Perot interferometer and the delay line indicates
there may exist parameter regions where delay lines coul
quieter than Fabry-Perot interferometers, depending on
relative sizes of the spot circle radius, the beam spot, and
mirror. However, these results must be used with caut
since the fact that the laser beam spots are all near the
of the mirror, rather than at the center, could lead to a hig
degree of spatial correlation in actual mirrors than the c
for the half-infinite mirrors. While there may be therm
noise issues that a semi-infinite mirror model fails to addre
it remains a useful model system and will be applied in
ture work to several problems, including nonuniform lo
and elastic anisotropy as would be encountered with crys
line materials that may be chosen for the mirrors in advan
receivers. By an appropriate generalization of the Gree
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function, these would be amenable to an analysis simila
that described here.
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APPENDIX

In evaluating Eqs.~30! and ~33!, we have used the rela
tions

E E dS8E E dS9e22urW8u2/w2
e22urW9u2/w2 1

urW82rW9u
5

p5/2

4
w3

~A1!

and

E E dS8E E dS9e22u~rW82rWp!/wu2e22u~rW92rWq!/wu2 1

urW82rW9u

5
p5/2

4
w3e2~rWp2rWq!2/2w2

I 0„~rWp2rWq!2/2w2
…. ~A2!

Below, we will derive Eq.~A2!, while Eq. ~A1! follows Eq.
~A2! as a special case whenrWp5rWq50W .

The derivation starts with the integral representation

1

urW82rW9u
5

1

w
A2

p E
0

`

dl l21/2e22l~rW82rW9!2/w2
. ~A3!

Using Eq. ~A3!, shifting variables asrW8→rW81rWp and rW9
→rW91rWq , and interchanging the integration order, we tu
the left-hand side of Eq.~A2! into

1

w
A2

p E
0

`

dl l21/2E E dS8

3E E dS9e22$rW821rW921l~rW82rW91rWpq!2%/w2
, ~A4!
r,

08200
to

e

whererWpq[rWp2rWq . Then, by regrouping the exponent as

rW821rW921l~rW82rW91rWpq!
2

5~11l!H rW82
l

11l
~rW92rWpq!J 2

1
112l

11l

3S rW92
l

112l
rW pqD 2

1
l

112l
rW pq

2 , ~A5!

we perform the surface integrations as Gaussian integrati
finding that

@Eq. ~A4!] 5
1

w
A2

p S pw2

2 D 2E
0

`

dl

3l21/2
1

112l
e2@2l/~112l!#~rWpq

2 /w2!.

~A6!

A change of the integration variable froml to u defined by
2l/(112l)5(11cosu)/2 turns the parameter integral o
Eq. ~A6! into the canonical integral representation of t
modified Bessel functionI 0 of the first kind, namely,

E
0

`

dl
l21/2

112l
e2@2l/~112l!#~rWpq

2 /w2!

5
1

&
e2rWpq

2 /2w2E
0

p

du e2~rWpq
2 /2w2!cosu

5
p

&
e2rWpq

2 /2w2
I 0~rWpq

2 /2w2!. ~A7!

Equation~A2! now follows Eqs.~A6! and ~A7!.
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