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Estimating the off resonance thermal noise in mirrors, Fabry-Perot interferometers, and delay
lines: The half infinite mirror with uniform loss
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We present an analysis comparing the thermal noise in Fabry-Perot and delay-line interferometers with
half-infinite mirrors. With a center to center spot spacing of at least twice the Gaussian beam spot size a delay
line produces significantly less phase noise than a comparable Fabry-Perot interferometer for the case of half
infinite mirrors at frequencies where test mass thermal noise usually dominates. When the delay-line spots
overlap substantially the delay-line produces approximately the same noise as the Fabry-Perot interferometer.
For a single bounce these results agree with those based on the method of Levin.
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. INTRODUCTION pointX resulting fromZ;(F) = 7;«(F)ny, where7; is a stress
. ) o tensor at the surface poift andn is the unit vector normal
Several large interferometric gravitational wave detectorgg the surface. It is shown in Rei6] that in the quasistatic

will begin regular astronomical observations over the nexgpproximation the fluctuation dissipation theorem can be
few years; Laser Interferometric Gravitational Wave Obseryritten

vatory LIGO (USA) [1], VIRGO (French-Italian [2], and

GEO 600(British-German [3]. The fundamental sources of R . 2kgT e o1

noise in the first-generation LIGO interferometer will be  (Ui(F)Uj(F2)),~—" deV[‘?lei(x'rl'C ) Ckipa( @)
seismic noise filtered through the mirror suspension at low

frequency <50 Hz), shot noise at high frequencyf ( X[ dpxgj(X,F2;¢")], )
>200 Hz), and thermal noise in the fused silica interferom- , _ _

eter mirrors at intermediate frequencies (50<Hz where we rep!aced the full Gregn.s funct|on. W|th.the lossless
<200 Hz). Gillespie and Raab calculated this last noise>'€en’s function and hence eliminate the imaginary part of
source using a normal-mode expansion of the displacement@€ Stiffness tensor from the argument of the Green's func-
in the mirrors[4]. More direct approaches to the problem tion. Moreover, When_ the loss function is the same for all
have been developed by Levi], Nakagawaet al. [6], and components of the stlffne_ss tensor and we consider the qua-
Bondu, Hello, and Vine{7]. These nonmodal approaches SiStatic limit, we can rewrite E¢3) as

often lead to simpler expressions for model problems, offer-

kgT .
ing greater insight into the parameters determining the mag- <ui(F1)uj(F2))w=i¢(w){xffa“°(r*l,r”2;c’)
nitude of the thermal noise. They also serve as the basis for @
g}dc;re efficient computational methods than the modal meth- + stita“c(r*z,r*l;c’)}. (4)
The analysis in our previous papfs] began with the The loss function of the materialy(w), can be factored in
general fluctuation dissipation theorem this fashion only for the special case where, for each com-

ponent of the stiffness tensor, the real and imaginary parts
are in the same ratio so thaf; ()= ¢(®)cjj(w). We
derive Eq.(4) from Eq. (3) after integration by parts, using
the traction-free boundary condition, the field equation, and
which relates the cross-spectral density of the displacementhe uniformity of the loss. We see that Ed) is valid only
u; of a body to the elastic response functipfi of that body, ~ when all the above assumptions are satisfied, including the
wherekg is the Boltzmann constant, is the temperature,  single loss function assumption. In more general cases such
is a surface point, and=c;j, is the generalized stiffness as localized lossy layers, E¢}) will have a modified form,
tensor, which can be divided into a real and an imaginangstill derivable from the general quasistatic formula, E3).
part: In the initial large interferometric gravitational wave de-
tectors the lowest-frequency normal mode of the test masses
Cijii (@) =Cjj (@) —iC{jy (). (20 will be above 6 kHz, while the highest frequency at which
the test mass thermal noise is larger than the shot noise will
Specifically, the response functiog(X,f) is a dynamic be approximately 200 Hz. Thus, the quasistatic approxima-
Green's function at frequency satisfying the traction-free tion will be valid over the range of interest for practical
boundary condition, relating the displacementat volume  applications. Here, the Green’s function approach is particu-

N N 2|(BT S
(Ui(F)U}(F2) o =——IMxij(F1,72;0), D)
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larly advantageous compared to the modal approach, which The autocorrelation function of the phase fluctuations
requires summing over many highly detuned modes. In thigenerated by the random variahie is
paper we discuss half-infinite mirrors, for which the quasi-
static approximation is better described by comparing the _
time required for elastic waves in the test mass to cross the Ro(D)=(e(D)¢(0)), ©)
laser beam spot to the period of the highest-frequency gravi-
tational wave for which test mass thermal noise is of interestwhere the notatiorf ) denotes the statistical expectation op-

In this paper we derive expressions relating the crosserator, which can be evaluated usiggt) from Eq. (8) by
spectral density of the mirror displacements to the phas@terchanging the order of the statistical averaging and spa-
noise imposed on a Gaussian light beam reflected from #al integrations to obtain
mirror, on a beam reflected from a Fabry-Perot interferom-
eter, and on a beam passing through a delay line. We then 2

. . 16 k ColF1202 ol 122

evaluate these three expressions for the spectral density of R, ()= _2_4f f dsf f ds e 2l wog=2|"|%w
phase noise treating the mirrors as half-infinite in extent and W
wi_th uniform Io_ss. qu the case of a single bounce_ from a X(82(F 1) 8z(F" ,0)). (10)
mirror we obtain Levin'g5] result as corrected by Liu and

Thorne[8].
The Fourier transform of the autocorrelation function of the

Il. PHASE NOISE OF A GAUSSIAN BEAM phase fluctuations induced by a single bounce from a mirror
FROM A SINGLE MIRROR REFLECTION is the power spectral density of the phase noise,

A mirror at finite temperature will have a surface which is " "
distorted by Brownian motion. The electric field at a plane s;ingle(w):J dt eith(p(t):J’ dt €Y o(t)e(0)).
and timet associated with an incident TEj;jlGaussian light — —
beam of 1¢ field radiusw reflected from a mirror with sur- (11
face distortions5z(x,y,t) can be written, in the near field, as
a Gaussian beam with a small phase shift that is a function ghserting Eq.(8) into Eq. (11) and noting that the Fourier

the position on the mirrof=(x,y) and the timet, transform of the autocorrelation of the surface displacements
B, . A is the cross-spectral density, we obtain for a body with uni-
Eref(X.y,2,t) =Ege 117w eikz-eatg2ikozyt  (5) o joes
This reflected field just after the mirror can be decomposed 5
into a linear superposition of Hermite Gaussians, S ) = g%f f dSJ f 4S e 22wlg-2lf" [2w?
Eref(x,y,z,t):Eoei(sz“’ot);o mE—O A, mH(V2x/w) X (82(F) 6z(F")), - 12
x e~ OO (vayIwye VW), (6)  Equation(12) is the desired result, relating the spectral den-

] ] ] ) sity of phase noise induced on a Gaussian beam by a single
We need only retain the term in this expansion that corremrror reflection at finite temperature to the elastic properties
sponds to the TE mode {=m=0) because, in the case qf the mirror. Before evaluating this expression for the spe-
of a gravitational wave detector with Fabry-Perot arms, onlycific Green’s function obtained for a half-infinite mirror, we
this mode will be resonant, while for a delay-line system agevelop similar expressions for the cases of a Fabry-Perot

spatial filter at the output of the interferometer will selectinterferometer in Sec. Il and a multipass delay line in Sec.
only this spatial mode. Equating Eg$) and (6), and ap- |y

proximating the complex exponential in E&) to first order

in 6z(x,y,t), the integral projecting out the coefficient of the

TEMgy mode is Ill. PHASE NOISE OF A GAUSSIAN BEAM EMERGING
FROM A FABRY-PEROT INTERFEROMETER

aki (= * "
Agt)~1+ W_WZJ dxf dye‘z‘”z""’zéz(x,y,t), Here, we generalize the noise formulda2) from the
0T @ single-bounce case to the light reflected from a Fabry-Perot
interferometer assuming the end mirror is a perfect reflector,
which means that the phase shift after reflection from a mirl-€., has a unit power reflection coefficie®{=1), and the
ror is input mirror has a power reflection coefficigRt. The field
reflection coefficient of the input mirror can the be written as

4k 2w s r= JR,, and the transmission in either direction through this
¢(t)~WJ J dse oz(r.), ®  mirror is it, wherer2+t?=1 for a lossless cavity. For an
incident fieldE, the expression for the reflected field is, as
where [ [dS=[[dx dy. usual[9],
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E oAt : . o )
I’éf( ): I_tIZ{el<pE(t—T)+rlel[(pE(t—T)+<p|(t—27')+<pE(t—3T)] Szp(w):f dte""t(<p(t)<p(0)>
0 —
+r|26i[<pE(tfr)+4p|(t72T) , % 0 N , 3 .
— + n p— Iw n—-p)r
+pE(t—37)+ ¢ (t—47) + e(t—57) (1+r) ng Z
-1 (13 o _
XJf dt €“(oe(t) pe(0))

where og(t) and ¢,(t) are the phase shifts due to the end .
and input mirrprs, respectively, {it timeand 7 is the single- N 2 Z n+pelw2 n—p)r

pass transit time through the interferometer, iesc/L, =

whereL is the distance between the Fabry-Perot mirrors. For

small fluctuations, the phase shifts are small, and thus the % _

exponentials in Eq(13) can be approximated by the first- XJ dte'wt<<P|(t)<P|(0)>], (18)
order expansion term. Arranging the resulting terms by time o

delay yields

]

where we have used the Fourier shift theorem. Noting that
the Fourier transforms appearing in Efi8) are independent
—— 1+ > [r"P2e(t—n1)] of the double sums; they can be factored out of the sum, as a
13 direct consequence of the statistical stationarity. The inte-
, grals yield the single-reflection phase nmsﬁﬁw) and
+i _224 [r} 2<P|(t—n7)]]- (14 S| (w) for the end and input mirrors, respectively, according
' to the definition(11). Summing the remaining series, we

find, after rationalizing the denominator and multiplying out
Assuming that the sum over the phase shifts is still smallthe terms, that

we can determine to first order the overall phase in(&E4),
and find that

Eret/Eo=T)

SRw) = (+n)” N cog2 )7l
e()=(1+r)[Ape(t) +Ag (D], (15 T T 1 7
X[SH(w)+1S,(w)]. (19)

where

Equation (19) is the first principal result of this paper,
expressing the phase noise of the Gaussian beam emerging
o from a Fabry-Perot interferometer in terms of the input mir-
= E r{‘_lgoE(t—(Zn— 1)7) ror reflection coefficient, , the transit timer, and the single-
n=1 reflection phase noise3;(w) and S,(w). Sincer,~1, the
(16) denominator of Eq(19) can be near zero whewr=nr,
A<p|(t)=I’|(p|(t—27')+l‘|2(p|(t—47')+'" co_rresponding to the copstructive a_lccumulation of the phz_ise
noise at these frequencies, for which the surface fluctuation
6z modulates the laser beam in resonance with the Fabry-
=n21 re(t—2n7). Perot response.

Ape(t)=@e(t—7)+ 1 @g(t—=37)+-

With Eq. (15), the autocorrelation function of the phase noise V. PHASE NOISE OF A GAUSSIAN BEAM PASSING
is THROUGH A DELAY LINE

The phase fluctuations for a beam passing through a delay
(e(1)(0))=(1+r)(Aee(t)Ape(0)) line in which the light bounces between two mirrors, sam-
pling a series of different points on each mirror at a series of
HAe (AR (0))}, 17) different times, can be obtained by summing up a series of
phase contributions for a single bounce as given in(Bp.
where we use the statistical independence of the fluctuationsith the time and space coordinates chosen appropriately for
in the two mirrors to eliminate the cross terms and assumedach bounce. More precisely, for a delay line in which the
stationary statistics. By inserting Eqgl6) into Eq. (17),  beam bounce8l times at positions,,, on the surface&s’ of
moving the expectation operator inside the summations, anthe end mirror, andN—1 times at positiong,, on the sur-
Fourier transforming the autocorrelation function, we obtainface ¢’ of the input mirror, with transit timer between the
the power spectral density of the phase noise mirrors, the total phase noise can be written
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N ak \z .,
e(=ge e (D=3 ey t) Op= _ww?') e )f f ds’f f s
n=1
N-1 x @ 20 TP+ =T WP 570 (77 S2e(7)).,
+ X 5, ), (20)
p'=1

:eiZ(n’*nH)Twsg(w,'?n/ ,Fn/,), (24)
where the second forms are obtained from the first by the use
of the single-mirror phase function given in E@), except  whereS,(w,,7>) is the cross-spectral density of the phase
that it is generalized to a Gaussian beam centered on a poififictuations of Gaussian beams centered,aandr,,
r, at a timet,,
S(p(w! Fl , r_)z)

single; 4k ) 2| P =1 2P >/
¢ e(rnrtn)zm dS'e n oz(r',t,),

o1 Ei—gvaifde’fde”

X e72\rﬁ7F1\2/W2e72\l?"7|72\2/w2< 52( F’)&Z( F”)>w ,
and the definitions of the bounce timgs=t—(2n'—1)7
andt, =t—2p’r. (25
The autocorrelation function for the phase is S . )
which is an analog of Eq12) but generalized to two dis-

(p(D)e(t")) crete laser-beam spot§; and f, in accordance with Eqg.
, , (21). It is symmetrical under the interchangg—r, due to
=(eeee(t’) (a1t e(t) the Onsager theoreffl0]. With these quantities the phase

N N noise spectral density for the end mirror is given by
ingle, = ingle,
=< > oF" M o tar) 2 sosE'“ge(rnu,t;”)> N N
n'=1 n"=

Sjw)=2 X
N-1 N-1 N =1 =1
+< (Plsmgle(ﬁp/ ,tp/) 2 (plslngle(ﬁp,, ,t;,,)> N N
P D)
N

; I N N
elz(n -n )Twsg(w,rn/ ,rn//)

N N n"=1n"=1
= z <(P5Eingle(|;>n, vtn’)(PSéingle(Fn”!t,//» N
n'=1n"=1 " => Si(w,fh.)+2> X cod2(n—q)7w]
NC1 N-1 n=1 n=2q=1
+ 2 2 (oMb ) P t)), (22 X SH(w,Fp,Fy), (26)
p/:1 p//::L

where the first form of Eq(22) takes advantage of the inde- where the last line explicitly separa}tes the equal-point f[erms
pendence of the fluctuations on the two mirrors, and the sedor ”'_: n” and uses the aforementioned Onsager relation to
ond uses the second form of E@0). Fourier transforming Simplify and reindex the double sum. Following the same
the autocorrelation function, Eq22), with respect to Procedure for the input mirror and combining with Eg6)

—t'=T) vyields the power spectral density of the phasefor the end mirror, we arrive at an expression for the spectral

noise. To evaluate this quantity, consider a typical term, ~ density of phase noise imposed on a Gaussian beam passing
through the delay line,

E _ - joT, _single = single > ’
OF = | AT 27, 1) 0 1) Syl(0) = SE(0)+ 8, (0)
aK \2 N N n-1
= W) ffds'ffds' =2, Si(@. M) +22 3 cog2(n-q)1e]
n= n= =
Xe—2|F’—an‘Z/er—Z‘F"—anrlz/Wz N-1

X SE(w,Fy,Fg)+ n21 S,(@,pn,fn)

xf_ AT 69T(52e(7" 1) S2e(F" L)), (23) e

| o +22, 2 c0$2(n—0)70]S,(w.5n.fq)-
where in the second form we have used the single-mirror n=2g9=1

phase function as in Eq12) but with the necessary modifi- (27)
cation Eq.(21). Noting thatt, —t/,=t—t'+2(n"—n’)r
and applying the Fourier shift theorem, we see that Equation(27) is the second principal result of this paper.
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V. HALF-INFINITE MIRRORS WITH UNIFORM LOSS B. Phase noise after reflection from a Fabry-Perot

. . . interferometer
A useful model system simpler to treat than mirrors with

realistic aspect ratios, but retaining much of the essential Recall that Eq.(19) for the phase noise after reflection
physics, is a semi-infinite mirrdi5]. In the next three sub- from a Fabry-Perot interferometer requires the single-bounce
sections, we evaluate the cross-spectral density of the diphase-noise spectral densnfé%and S, each given by Eq.
placement noise for a single bounce from a mirror, for re-(37),
flection from a Fabry-Perot interferometer, and for passage
through a delay line, Eq$12), (19), and(27), respectively.

For each of these expressions we need the cross-spectral den-
sity of the displacement noise of the mirrors, as expressed by
the fluctuation dissipation theorem in E8) or Eq.(4). The X[SH(w) +17S,()]. (32
essential input for these three calculations is the static elastic

Green’s function for an isotropic half-spafH0],

(1+r))2 -1

(1+r7)

r
2 cog2wT)

FP .\ _
Se ()= S 1+r

This expression shows that the Brownian motions of the two
2 mirrors impose on the light-beam phase noise, which is fil-
1 .
(29 tered by the Fabry-Perot response function.

stati -W) —

Xzz m

. L . . . C. Ph i ft ing th h a delay li
When this expression is substituted into E4), we obtain ase noise atter passing through a delay fine

for the cross-spectral density of the surface displacements ~ The phase-noise spectral density for a delay line received

considerable attention from the gravitational wave interfer-

) ometry group at the Max-Planck-Institute for Quantumoptics

= oy 2keT 1-o 1 in Garching, Germany in the 1980s, where the potential ad-

<5Z(r )5Z(r )>w_ d’(w) 212l (29) . . .
® 7E |F' =" vantage of delay lines was recognized from experimental re-
sults on their 30-m interferometer, and was discussed quali-
. _ ) , tatively in terms of a modal picturgl1]. This work resulted

where o is the Poisson ratiof the Young's modulus, and i 5 series of unpublished reports and is discussed briefly in
r’=(x",y") is the position on the mirror surface. Ref.[12] by the same group.

The complexity of the analysis for the delay line is con-
siderably greater than that for a Fabry-Perot interferometer.
The point of departure is the evaluation of expresdi®n

Substituting Eq(29) for the cross-spectral density of the for the cross-spectral density of displacement noise in the
displacement noise into E@12) for the phase noise after a mirror, which requires the two-point phase-noise correlation

A. Phase noise after a single bounce from a half-infinite mirror

single bounce from a mirror, we find function (25) in place of Eq.(30), i.e.,

- 32T p(w) k*\[(1-0?) 32T d(w) k2 (1— 0'2)

ingl — B — 4 P B /
S(sp e(w) 773 @ W4 E ffds S(p(wvrler)_ 77_3 ® W ffds

Xffdsre2F’2/w2e2ra”|2/w2|a L J ffdsr 2" i3 AW 2~ ol 2w
r./_t:w .
(30) 1
X 4

R (33

The double surface integral can be performed explicitly as

shown in the Appendix, yielding the result ) )
Fortunately, these surface integrations can be performed ex-

plicitly, as shown in the Appendix, yielding
. 4kgT o(f) k? (1—0?)
| _ B
ST S T E

(31)

4kgT &(f) k? (1—0?)

~ _ —|Fy— 1o %2w?
Sgo(f!rlirZ)_ 7T3/2 f W E e IFa=ral

This single-bounce resul81) agrees with Eq(15) of Levin

[5] when corrected for an algebraic error found by Liu and X1 o[y = o) 72w?), (34
Thorne[8] as shown in their Eq59). Note also that Levin's

result is a single-sided spectral density for the displacement

noise and our result is a double-sided spectral density. Morexhere | is the modified Bessel function of the first kind.
over, our result is for the phase noise, which must be divide@ubstituting this expression into E@7), we obtain the final

by 4k? to produce the result for the displacement noise.  result for the phase noise after passing through a delay line,

082002-5



NAKAGAWA, GUSTAFSON, BEYERSDORF, AND FEJER PHYSICAL REVIEW B5 082002

5 A EARRE RS and lying on a circle of radiuR as shown in Fig. 1. As the
spot circle radius becomes comparable to the beam spot size
on the mirrors, the phase noise from the delay line ap-
proaches that of the Fabry-Perot interferometer. When the
spots are largely overlapping, the phase noise for the delay
line is still less than that of the Fabry-Perot interferometer
between 40 and 175 hertz, after which the delay line is
noisier. When the spots are not overlapping appreciably the
thermal noise of the delay line is less than that of the Fabry-
Perot interferometer. However, in these calculations the spa-
tial correlation scale is the size of the light beams on the
mirror. Any increase in the spatial correlation due to the fi-
nite size of the mirrors is ignored in this calculation for a
half-infinite mirror. Thus it seems likely that the noise in a
delay line made from mirrors with a more realistic aspect
ratio would be larger than is calculated here. Evaluation of
the thermal noise in a model system of finite transverse di-

FIG. 1. Comparison of the phase noise from a delay line and &"€Nsion is currently being undertaken to clarify this point.
Fabry-Perot interferometer. The solid cuiidg is for a 4-km Fabry-
Perot interferometer with an input mirror power reflectivity Rf VI. CONCLUSION
=0.97 and an end mirror power reflectivity BE=1.00. Curves 2, . . .
3,4, 5, and 6 correspond to 4-km delay lines all with 130 spots on ' N€ primary results of this paper are the relatit® and
the end mirror and laser-beam spots df fiéld radiusw in a pat-  (27). They relate laser-beam phase noises to stochastic mirror
tern with their centers on a circles of radiRs=w/3 (2), R=2w/3 surface vibrations, generalizing the known single-reflection
(3), R=5w/2 (4), R=10w (5), and R=20w (6), where w result (12) to a Fabry-Perot interferometét9 and to an
=3.5cm, the spot size used for both mirrors of the Fabry-Perobptical delay line(27), respectively. Specifically, the rela-
interferometer. The mirroQ is assumed to be>81C° and the ma-  tjons facilitate evaluations of the phase-noise fluctuation cor-
terial properties are those of sapphiee=71.8 GP ands=0.16.  relation of a Gaussian laser beam in terms of a two-point
However, we are treating sapphire as isotropic for the purpose ofss-spectral correlation function of the mirror surface dis-
this illustration and assuming a single loss function. placements. In particular, when the surface fluctuation is
dominated by the thermal excitation, one can calculate intrin-
il sic thermal noises of the laser-beam phase, with the help of
Sy(f)=S5"41f) (2N—1)+2n§=‘,2 2‘1 co§2(n—q)7w] the fluctuation-dissipation relatidi&q. (3) or (4)], for Fabry-
4 Perot interferometers and optical delay lines.
x @~ Ifa=Tgl%12w?) o(|Fn— Fq|2/2W2) Section V presents example calculations of thermal noise
Ne1 o1 for isotropic sem(i;)in)fi?te rﬁirrors.lTheﬂresulting expressions
i 122 are given in Eq.(31) for the single-reflection case, in Eq.
+2n§="2 qzl cog2(n—q)rwle P rd (32) for a Fabry-Perot interferometer, and in Eg5) for a
delay line. Our results for a single bounce from a mirror are
22 basically the same results obtained by Ley§], Bondu,
Xlo(1pn=pglT2W7) 1, (35 Hello, and Vinet 7], and Liu and Thorn¢8]. Moreover, the
results obtained for the Fabry-Perot resonators are consistent
with intuitive expectations. The comparison between the
where we have used E(B1) to express the prefactor. Fabry-Perot interferometer and the delay line indicates that
there may exist parameter regions where delay lines could be
quieter than Fabry-Perot interferometers, depending on the
relative sizes of the spot circle radius, the beam spot, and the
mirror. However, these results must be used with caution
Figure 1 compares the phase noise from a Fabry-Peraiince the fact that the laser beam spots are all near the edge
interferometer to that of several delay lines using the samef the mirror, rather than at the center, could lead to a higher
storage time for the Fabry-Perot interferometer as that prodegree of spatial correlation in actual mirrors than the case
posed for LIGO 1I[13]. The number of bounces used to for the half-infinite mirrors. While there may be thermal
compute the delay-line noise is the number of bounces thatoise issues that a semi-infinite mirror model fails to address,
will produce the same phase variation of the light for a sinu4t remains a useful model system and will be applied in fu-
soidal motion of the end mirror at frequencies well below theture work to several problems, including nonuniform loss
bandwidth of the Fabry-Perot interferometer. The laser bearand elastic anisotropy as would be encountered with crystal-
spots are all of ¥ field radiusw and are positioned on the line materials that may be chosen for the mirrors in advanced
delay-line mirrors with their centers evenly spaced in angleeceivers. By an appropriate generalization of the Green’s

Phase Noise [prad/\/ Hz]

Frequency [Hz]

N n-1

D. Comparison of a Fabry-Perot interferometer and a delay
line
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function, these would be amenable to an analysis similar tevherer,,=r,—

that described here.
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=

q. Then, by regrouping the exponent as

P12 2n2 Pl PP 2
e+ N =" +1,q)

2+ 1+2\
1+

"//

=(1+N)ir Y

"= Fpg)

x| - (A5)

A 2 A
—F | +—7?
1+2\ Pd 1+2\ P

In evaluating Eqs(30) and (33), we have used the rela- we perform the surface integrations as Gaussian integrations,

tions

5/2
ff dS/fJ'ds'/ —2|F"|21w? 72\r‘"\2/w :77 w3
L *"| 4

(A1)

f f dS’f f d9e =2|(r’ 7rp)/w|2 —2|( r”fr )/w|2| a|

p rq) ow? |0((r _rq)Z/Z\NZ)

= —W e (A2)

4

Below, we will derive Eq.(A2), while Eq.(Al) follows Eq.
(A2) as a special case whép=r,=0.
The derivation starts with the integral representation

*” _ \/>J AN N~ V22N =)W (A3)

Using Eq. (A3), shifting variables ag” —1'+f, and "

— 1"+, and interchanging the integration order, we turn

the left-hand side of EqA2) into

1 [2 (=
—\ﬁf d)\)\’l’szds’
W T Jo

XJ f 4Se 217 PPN 7 g2 (Ag)

finding that

1 (2 mw?\? (=
[Eq.(A4>1=W\£(TW> [ "o

2 St N [2)\/(1+2}\)](F§q/w2)_

1+2x
(AB)

A change of the integration variable fromto 6 defined by
2N/(1+2N)=(1+cosh)/2 turns the parameter integral of
Eq. (A6) into the canonical integral representation of the
modified Bessel functioh, of the first kind, namely,

- A2 o
—[2M(1+20)](72 jw?)
f dn 1T 2n e P

_ ie—ng/ZWZJWdee—(ng/Z\NZ)cosa
V2 0

T _;
- e o2 (2 /20?). (A7)

Equation(A2) now follows Egs.(A6) and (A7).
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