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Thermal noise in half-infinite mirrors with nonuniform loss: A slab of excess loss
in a half-infinite mirror
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We calculate the thermal noise in half-infinite mirrors containing a layer of arbitrary thickness and depth
made of excessively lossy material but with the same elastic material properties as the substrate. For the special
case of a thin lossy layer on the surface of the mirror, the excess noise scales as the ratio of the coating loss to
the substrate loss and as the ratio of the coating thickness to the laser beam spot size. Assuming a silica
substrate with a loss function of 331028, the coating loss must be less than 331025 for a 6 cmspot size and
a 7 mm thick coating to avoid increasing the spectral density of displacement noise by more than 10%. A
similar number is obtained for sapphire test masses.
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I. INTRODUCTION

The second generation Laser Interferometric Gravitatio
Wave Observatory~LIGO! gravitational wave detector wil
require large core optics with low internal dissipation. T
baseline design for LIGO II will use 30 kg sapphire mirror
a fall back design would use silica mirrors@1#. A loss func-
tion less than 3.331029 has been measured at high freque
cies in small samples of sapphire@2,3#. Substrate loss func
tions for silica have been measured to be around or be
331028 in several different sample geometries@4–7#. How-
ever, to achieve this low loss in a full size coated and s
pended LIGO II mirror the attachments for the fused sil
suspension, the multilayer mirror high reflector coating, a
the antireflection optical coating must not increase the
placement noise of the mirror in the frequency range of
terest.

Until recently the approach used to calculate mirror th
mal noise involved a normal mode expansion of the mir
acoustic modes@8#. Direct approaches to the problem ha
been developed by Levin@9#, Nakagawaet al. @10,11#,
Bonduet al. @12#, and Liu and Thorne@13#. Moreover, Levin
has used this approach to point out that nonuniform loss
mirror can lead to higher than otherwise expected ther
noised@9#. In this paper we use the general formalism dev
oped in Refs.@10# and @11# to derive expressions for th
phase noise imposed on a Gaussian light beam when
reflected from a half-infinite lossless mirror with a los
layer of arbitrary thickness placed at an arbitrary depth fr
the surface from which the light beam is reflected. To co
pute the noise for the case where the mirror has both loss
an extra layer with a different loss we take the incoher
sum of the noises from the uniform-lossy mirror and t
lossless mirror with a lossy layer. This procedure is leg
mate for low-loss cases where the loss can be estimated
curately by up to linear terms in the loss functions. Fina
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we discuss the experimentally important special case wh
the lossy layer is at the surface of the mirror and is th
compared to the spot size of the light beam.

II. MATHEMATICAL FORMALISM AND REVIEW

In our previous paper@11# we used the fluctuation dissi
pation theorem to compute the cross spectral density of
mirror surface displacements resulting from the o
resonance thermal noise in the test masses. The loss
parametrized through the imaginary part of the stiffness t
sor c; the calculation was carried out in the quasistatic lim
for isotropic and uniform loss, in which case the fluctuati
dissipation theorem can be expressed in terms of the s
Green’s function. As we showed in Ref.@11# the power spec-
tral density of the phase noise imposed on a light beam
field-amplitude radiusw reflected from a lossy half-infinite
mirror can be written

Sw
single~ f !5

16kBT

p3

1

f

k2

w4 E E dS8

3E E dS9e22urW8u2/w2
e22urW9u2/w2

Im xzz
v ~rW8,rW9!.

~1!

This result relates the spectral density of phase noise indu
on a Gaussian beam by reflection from a mirror at tempe
tureT to the static elastic properties of the mirror, the ima
nary part of the elastic Green’s function, and the laser be
spot size on the mirror.

It can be shown further that, under the usual single-lo
function assumption, the imaginary part of the elas
Green’s function is proportional to the loss function and t
static Green’s function~cf. Appendix A!. The essential input
©2002 The American Physical Society01-1
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for these calculations is, therefore, the static Green’s func
for an isotropic half-space medium given in Ref.@14#,

Im xzz
v ~rW8,rW9!5f•xzz

st~rW8,rW9!5f
12s2

pE

1

urW82rW9u
, ~2!

wheref is a loss function,s the Poisson ratio,E the Young’s
modulus, andrW8 and rW9 are surface points. The phase noi
after a single bounce from a half-infinite mirror with unifor
loss is obtained by substituting Eq.~2! for the imaginary part
of the Green’s function into Eq.~1! for the phase noise,

Sw
single~ f ,f!5

4kBT

p3/2

f~ f !

f

k2

w

~12s2!

E
, ~3!

which is in agreement with Levin’s result@9# for the dis-
placement noise as corrected by Liu and Thorne@13#, and
noting that our expression is for the double-sided spec
density and Levin’s result is for a single-sided spectral d
sity. We will now investigate the case where a lossy slab
embedded in a lossless half-infinite mirror, for which w
need the Green’s function for this more complicated pr
lem.

III. LOSSLESS HALF-INFINITE MIRROR CONTAINING A
LOSSY LAYER

To calculate the phase noise after a single bounce fro
lossless mirror containing a slab with loss we start as be
with the elastic Green’s function. For a half-infinite mirro
whose surface is atz50 and all of whose loss is confined t
a layer betweenz1 andz2 , the imaginary part of the Green’
function is derived in Appendix A,

Im xzz
v ~rW82rW9!5f

12s2

pE
@F~z1!2F~z2!#, ~4!

where the functionF is defined as

F~z!5
1

AurW82rW9u214z2 S 11
z2/~12s!

~ urW82rW9u214z2!

1
12z4/~12s!

~ urW82rW9u214z2!2D . ~5!

Substituting Eq.~4! for the imaginary part of the Green’
function into Eq.~2! for the phase noise after a single boun
we find

Sw
layer~ f !5S 16kBT

p3

f layer~ f !

f

k2

w4D ~12s2!

pE E E dS8

3E E dS8e22~rW82/w2!e22~rW92/w2!@F~z1!

2F~z2!#. ~6!

The two surface integrals can be performed as show
Appendix B; inserting these results into Eq.~6! we obtain
10200
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Sw
layer~ f ,w!5

4kBT

p3/2

f layer~ f !

f

k2

w

~12s2!

E
@G~w,s,z1!

2G~w,s,z2!#

5Sw
single~ f ,f layer!@G~w,s,z1!2G~w,s,z2!#,

~7!

where in the second equation we use Eq.~3! for the thermal
noise from a uniform half-infinite mirror andG is defined as

G~w,s,z!5
2

Ap
E

0

`

dxe2x2H e2~4z/w!xF11
2z

w~12s!
x

1
4z2

w2~12s!
x2G J . ~8!

This integral is evaluated analytically in Appendix B:

G~w,s,z!5
1

Ap

2

12s
@~z/w!24~z/w!3#1F12

2~z/w!2

12s

1
16~z/w!4

12s Ge4~z/w!2
erfc~2z/w!. ~9!

The factor preceding the square brackets in Eq.~7! is the
phase noise after a single bounce from a half-infinite mir
with a uniform lossf layer. If we setz150 and take the limit
asz2 becomes large,G approaches 1 and we rederive Eq.~3!
for a mirror with uniform loss. Figure 1 plotsG(w,s,z2)
2G(w,s,z150) as a function of z2 /w. We see that
G(w,s,z2)2G(w,s,z150) grows monotonically with the

FIG. 1. A plot of the functionG(w,s,z1)2G(w,s,z2) for z1

50 as a function ofz2 /w evaluated for the Poisson ratio of sa
phire, taken to be 0.23.
1-2
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THERMAL NOISE IN HALF-INFINITE MIRRORS WITH . . . PHYSICAL REVIEW D65 102001
layer thickness, and approaches 1 forz>w. If we fix the
layer thickness atz22z15d and then plot the phase noise
a function of the depth of the layer below the surface,
find that the phase noise goes to zero as the layer is low
into the mirror beyond a characteristic depth approximat
equal to the light beam spot size. The result of evaluating
~7! for several values ofd5z22z1 as a function ofz1 /w is
shown in Fig. 2.

IV. LOSSLESS HALF-INFINITE MIRROR CONTAINING A
THIN LOSSY SURFACE LAYER

For the important practical case, which approximate
multilayer dielectric coating, as a thin lossy layer at the s
face of the mirror, i.e.,z150, z25d whered!w, G can be
integrated analytically as shown in Appendix B to yield

Sw
layer~ f !5Sw

single~ f ,f layer!H 2

Ap

~122s!

~12s! S d

wD1OS d

wD 2J .

~10!

V. LOSSY HALF-INFINITE MIRRORS CONTAINING A
THICK LOSSY SLAB

To evaluate the case of a half-infinite lossy mirror
which is embedded a lossy layer, we use linear superposi
As shown in Appendix A the uniform-loss contribution ca
be given by Eq.~3! with f5fsubstr, while the excess laye
loss is given by Eq.~10! with f layer→f layer2fsubstr. Then
by linearly superposing these two spectral densities we
tain the total phase noise imposed on the light beam:

FIG. 2. A plot ofG(w,s,z1)2G(w,s,z2) for several values of
uz22z1u/w5$0.1,0.316,1.0,3.16,10.0% as a function ofz1 /w evalu-
ated for a Poisson ratio of 0.23.
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Sw
total~ f !5Sw

single~ f ,fsubstr!H 12S 12
f layer~ f !

fsubstr~ f ! D @G~w,s,z1!

2G~w,s,z2!#J . ~11!

For cases where the layer loss is much greater than tha
the substrate, this expression can be simplified to the follo
ing form:

Sw
total~ f !5Sw

single~ f ,fsubstr!H 11
f layer~ f !

fsubstr~ f !
@G~w,s,z1!

2G~w,s,z2!#J . ~12!

We will now examine the experimentally important ca
where the lossy layer is thin and at the surface of the h
infinite substrate.

VI. LOSSY HALF-INFINITE MIRRORS CONTAINING A
THIN LOSSY SURFACE LAYER

To evaluate the case of a half-infinite lossy mirror with
thin lossy surface layer or coating, we compute the limit
z150 andz25d!w as we did above. The first case consis
of a half-infinite mirror with lossfsubstruniformly distributed
throughout, and the second case will be a half-infinite lo
less mirror containing a layer of thicknessd at the surface; in
other words, a coating, with lossfcoat. With Eqs. ~3! and
~10! we find

Sw
total~v!5Sw

single~ f ,fsubstr!H 11
2

Ap

~122s!

~12s!

fcoat

fsubstr
S d

wD J ,

~13!

where the 1/w2 dependence of the term corresponding to
surface layer agrees with Levin’s Eq.~20! in Ref. @9#.

VII. COMPARISON WITH LEVIN’S METHOD

We have also calculated this expression using the met
of Levin, and find the same result. Levin’s method consi
of calculating the response of the test mass to a cyclic p
sure distribution applied to the test-mass face, where
pressure distribution has a Gaussian profile of the sa
width as the beam. It can be shown@9# that for frequencies
far below the lowest resonant frequency of the test mass,
~double-sided! power spectrum of excitations having th
same Gaussian profile as the pressure distribution is

Sx~ f !5
2kBTU

p f F2 f~ f !, ~14!

whereF is the amplitude of the Gaussian pressure distri
tion, U is the mechanical energy of the resulting test-m
response, andf( f ) is the loss angle of the test-mass r
sponse. The mechanical energy may be shown to be@12,13#
1-3
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U5
F2~12s2!

2ApwE
, ~15!

whereE is the Young’s modulus of the mirror material ands
is Poisson’s ratio. The total loss anglef( f ) has contribu-
tions from loss in the substrate and loss in the coating. F
thin coating we can write@15#

f~ f !5fsubstr1
dUd

U
fcoat, ~16!

wheredU is the energy density at the surface integrated o
the surface andd is the thickness of the coating. Using th
solutions to the elastic equations presented by Bonduet al.
@12# ~as corrected by Liu and Thorne@13#! we have found

dU5
F2~11s!~122s!

pwE
. ~17!

Combining these equations, we obtain

Sx~ f !5
kBT~12s2!

p3/2f wE
fsubstrH 11

2

Ap

~122s!

~12s!

fcoat

fsubstr
S d

wD J .

~18!

The phase shift induced by a displacementx of the mirror
surface is 2kx, wherek is the wave number, so multiplying
Sx( f ) by (2k)2 we obtain the phase noise power spectru
Sf

Single( f ). The result is identical to Eq.~13!.

VIII. LIGO II COATING LOSS REQUIREMENTS FOR
SAPPHIRE AND SILICA SUBSTRATES

The frequency range over which the thermal noise in
mirror coating is important for LIGO II is between 200 an
400 Hz. In this region the displacement noise in a sil
substrate is dominated by thermal noise while in sapphire
displacement noise is dominated by thermoelastic noise
300 Hz the sapphire linear spectral density of thermoela
noise is between one-half and one-third the thermal nois
silica. Considering a silica substrate the requirement
LIGO II is that neither the attachments nor the optical co
ing increases the power spectral density of the thermal n
by more than 10%, which puts a limit on the coating loss

fcoat,
Ap

20 S w

d D F ~12s!

~122s!Gfsubstr. ~19!

Assuming a spot sizew56.0 cm, a coating thicknessd
57 mm, and using the material properties of fused sil
with a Poisson ratio ofs50.16 and a loss function o
fsubstr53.331028, we find, from Eq.~19!,

fcoat,331025 ~20!

in order that the high reflectivity coating not increase t
power spectral density of the thermal noise by more th
10%. Preliminary measurements suggest that currently a
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able coatings do not meet this requirement@5#. A number in
the range of 1025 should also apply for sapphire. In bot
cases it should be borne in mind that we have neglected
differences in the elastic properties of the substrate and
film, an issue that will be addressed in a future paper. P
liminary calculations indicate that these corrections will n
change the result by more than a few tens of percent.

IX. CONCLUSION

We have calculated the thermal noise caused by the in
sion of a lossy layer in an otherwise lossless half-infin
mirror. By taking a linear superposition of this noise sour
with that of a uniformly lossy half-infinite mirror we hav
computed the thermal noise in a half-infinite lossy mirr
containing a layer of excessively lossy material. The limit
which this lossy layer lies at the surface of the mirror and
much thinner than the laser spot size yields a simple ana
cal result, from which we can set an upper limit for th
acceptable loss in the LIGO II mirror coatings of 331025.
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APPENDIX A

In Ref. @10#, we have shown from the energy-balance
lation that

Im xpq
v ~rW1 ,rW2!5E

V
dV$@] ix jp

st ~xW ,rW1!#ci j lm9 ~xW !@] lxmq
st ~xW ,rW2!#%

1O~v!, ~A1!

wherex i j
st(xW ,xW8) is the elastic, traction-free Green’s functio

rW1 andrW2 are surface positions, and the integral is perform
over the lossy region of the mirror body, namely, over t
volume V where the lossci j lm9 (xW ) of the elastic constant is
nonvanishing. Hereafter, we assume the quasistatic li
thus ignoring theO(v) terms. Let us first introduce the usu
single loss functionf, so that

ci j lm9 ~xW !5f~xW !•ci j lm8 , ~A2!

where we assume the same loss function for all compon
of the stiffness tensor, a simplifying assumption for gene
cases. We next separatef into a uniform lossf̄ and fluctua-
tion Df(xW ) around it as

f~xW !5f̄1Df~xW !. ~A3!

For a localized loss, we setf̄50 while Df(xW )Þ0 in the
lossy region. For a localized excess loss, we setf̄ constant
1-4
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THERMAL NOISE IN HALF-INFINITE MIRRORS WITH . . . PHYSICAL REVIEW D65 102001
everywhere, whileDf(xW )Þ0 in the excess-loss region. Un
der these assumptions, thef̄ term in Eq.~A1! can be inte-
grated to yield

Im xpq
v ~rW1 ,rW2!uunif5f̄•xpq

st ~rW1 ,rW2! ~A4!

because, when integrated by parts with respect to] i , the
integrand becomes a delta function through the field equa

] i$ci j lm8 ] lxmq
st ~xW ,rW2!%52d jqd~xW2rW2!, ~A5!

while the surface integral term vanishes due to the tract
free boundary condition imposed onx i j

st . For the Df(xW )
term, assume thatDf(xW )5DfÞ0 whenxW is in a subvolume
V8 while vanishing outsideV8. The volume integral of Eq
~A1! can be similarly performed by parts, except that, in t
case, it only leaves the surface integral over the bound
surfaceS8 of V8,

Im xpq
v ~rW1 ,rW2!5f̄•xpq

st ~rW1 ,rW2!

1DfE
S8

dSi@x jp
st ~xW ,rW1!ci j lm8 ] lxmq

st ~xW ,rW2!#,

~A6!

because the delta function~A5! has no contribution sincerW2
lies outside the integration volumeV8. Let us apply Eq.~A6!
to a lossy layer, where the mirror body occupies the se
infinite space~2`,x, y,1`, z<0!, while the lossy re-
gion V8 is a near-surface layer bounded by the two plan
z52z1 and z52z2 (2z2<z<2z1<0). Without loss of
generality, we consider the local loss case, i.e.,f̄50 and
Df5f layer, below.@For the case of a uniform and an exce
layer loss, we setf̄5fsubstr and Df5f layer2fsubstr, and
include the previous uniform-loss result, thus deriving E
~10!.# Specifically whenp5q5z, Eq. ~A6! reads

Im xzz
v ~rW1 ,rW2!5DfE

Sxy

dS

3$@x jz
st~xW ,rW1!cz jlm8 ] lxmz

st ~xW ,rW2!#z52z1

2@x jz
st~xW ,rW1!cz jlm8 ] lxmz

st ~xW ,rW2!#z52z2
%,

~A7!

where the surface integral is over thexy plane. Due to the
translational symmetry in thex andy directions, the integra
of Eq. ~A7! becomes a convolution integral. Thus, by intr
ducing

x i j
st~rW,z!5

1

~2p!2 E d2peipW rWx i j
st~pW ,z!, ~A8a!
10200
n

-

s
g

i-

s,

.

F i jk~rW,z![ci j lm8 ] lxmk
st ~rW,z!

5
1

~2p!2 E d2peipW rWF i jk~pW ,z! ~A8b!

we can rewrite Eq.~A7! as

Im xzz
v ~rW1 ,rW2!5

Df

~2p!2 E d2peipW ~rW12rW2!

3@x jz
st~pW ,z1!Fz jz~2pW ,z1!2x jz

st~pW ,z2!Fz jz

3~2pW ,z2!#. ~A9!

The half-space Green’s function~A8a! can be found in Ref.
@14#. Here, we express the results in the derivative form

xab
st ~rW,z!5

11s

2pE F 2

R
dab2]a]b$2sR2~122s!z

3 ln~R2z!%G , ~A10a!

xaz
st ~rW,z!5

11s

2pE
]aF ~122s!ln~R2z!2

z

RG , ~A10b!

xzb
st ~rW,z!5

11s

2pE
]bF2~122s!ln~R2z!2

z

RG , ~A10c!

xzz
st~rW,z!5

11s

2pE F2~12s!

R
1

z2

R3G , ~A10d!

wherea,b5$x,y% andR5Ar 21z2. Explicit differentiation
reproduces the result of Ref.@14# after changingz→2z,
while it is easy to Fourier-transform the expressions~A10! to

xab
st ~pW ,z!5

11s

E

epz

p F2dab2~2s2pz!
papb

p2 G , ~A11a!

xzb
st ~pW ,z!5

11s

E

epz

p
i @~122s!2pz#

pb

p
, ~A11b!

xaz
st ~pW ,z!5

11s

E

epz

p
i @2~122s!2pz#

pa

p
, ~A11c!

xzz
st~pW ,z!5

11s

E

epz

p
@2~12s!2pz#, ~A11d!

using the identity

1

~2p!2 E d2peipW rW
epz

p
5

1

2p

1

R
~z<0! ~A12!

and itsz derivatives and integrations.
1-5
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The quantityF i jk(pW ,z) defined in Eq.~A8b! can be also
obtained from Eqs.~A11! and the symmetry properties of th
stiffness tensor in an isotropic medium,

ci jkl 5
E

2~11s! Fd ikd j l 1d i l d jk1
2s

122s
d i j dklG .

~A13!

Here, we quote only the results needed,

Fzaz
st ~pW ,z!5epz~2 ipa!z, ~A14a!

Fzzz
st ~pW ,z!5epz~12pz!, ~A14b!

which allow the explicit multiplication

xaz~pW ,z!Fzaz~2pW ,z!1xzz~pW ,z!Fzzz~2pW ,z!

5
12s2

pE
f ~p,s,z!, ~A15!

where

f ~p,s,z![2p
e2pz

p F12
1

12s
pz1

1

12s
p2z2G ,

~A16!

or after the Fourier transformation with the help of E
~A12!,

f ~r ,s,z!5
1

Ar 214z2 F11
1

12s

z2

r 214z2

1
12

12s

z4

~r 214z2!2G . ~A17!

Inserting Eqs.~A15! into ~A9!, we finally obtain Eq.~4!:
namely,

Im xzz
v ~rW1 ,rW2!5Df

12s2

pE
@ f ~ urW12rW2u,s,z1!

2 f ~ urW12rW2u,s,z2!#. ~A18!

APPENDIX B

The expressions for the phase noise contain surface
grals of the form

I ~rWa ,rWb!5E E dS8E E dS9e22~~rW82rWa!2/w2!

3e22~~rW92rWb!2/w2! f ~rW82rW9,z! ~B1!

where the integrals overdS8 and dS9 are over the two-
dimensional plane of the mirror reflecting surface defined
vectorsrW8 and rW9, andf is defined as
10200
.

te-

y

f ~rW,z![
1

ArW214z2 S 11
1

12s

z2

rW214z2

1
12

12s

z4

~rW214z2!2D . ~B2!

Due to the translational symmetry of the integration pla
the expressionI in Eq. ~B1! is a function of the difference in
the beam locationsrWa2rWb . Indeed, by shifting the integra
tion variables asrW8→rW81rWb andrW9→rW91rWb , we can rewrite
the expression forI as

I ~rWa ,rWb!5I ~rWa2rWb!5E E dS8E E dS9e22~~rW82rWa1rWb!2/w2!

3e22~rW92/w2! f ~rW82rW9,z!, ~B3!

which not only proves the above assertion, but also sho
that the integral is a double convolution that can be evalua
easily in the Fourier space. In the lossy layer Green’s fu
tion derivation in Appendix A, the functionf was obtained
from the Fourier representation

f ~rW,z!5
1

~2p!2 E d2peipW rW22puzu 4p

2p F11
1

12s
puzu

1
1

12s
p2z2G . ~B4!

Noting that the Fourier transform of a Gaussian is a Gaus

E E d2re2 ipW rW22rW2/w2
5E E d2re22~~rW/w!1 i ~w/4!pW !22~w2/8!p2

5
pw2

2
e2~w2/8!p2

, ~B5!

the expression forI is given as an inverse Fourier integral

I ~rWa2rWb!5
1

~2p!2 E d2peipW ~rWa2rWb!

3S pw2

2 D 2

e2p2w2/4e22puzu 4p

2p F11
1

12s
puzu

1
1

12s
p2z2G . ~B6!

The case of interest here isrWa5rWb , which simplifies the
expression to

I 5
1

~2p!2 •2p•S pw2

2 D 2

•2pE
0

`

dpe2p2w2/422puzu

3F11
1

12s
puzu1

1

12s
p2z2G
1-6
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5S pw2

2 D 2

•

Ap

w
G~w,s,z!, ~B7!

where

G~w,s,z!5
w

Ap
E

0

`

dpe2p2w2/422puzuF11
1

12s
puzu

1
1

12s
p2z2G

5
2

Ap
E

0

`

dxe2x224~ uzu/w!xF11
2

12s

uzu
w

x

1
4

12s

z2

w2 x2G . ~B8!

The integral can be performed explicitly. Lettingu
[2uzu/w, we find that

G~w,s,z!5
2

Ap
E

0

`

dxe2x222uxF11
1

12s
ux

1
1

12s
u2x2G . ~B9!

With

I 15E
0

`

dxe2x222ux5
Ap

2
eu2

erfc~u!, ~B10!
99
en
g/

E

n-

10200
I 25E
0

`

dxe2x222uxx5
1

2
2

Ap

2
ueu2

erfc~u!, ~B11!

I 35E
0

`

dxe2x222uxx252
1

2
u1

Ap

2 S 1

2
1u2D

3eu2
erfc~u!, ~B12!

we obtain

G~w,s,z!5
2

Ap
F I 11

u

12s
I 21

u2

12s
I 3G

5
1

Ap

2

12s
@~z/w!24~z/w!3#

1F12
2~z/w!2

12s
1

16~z/w!4

12s G
3e4~z/w!2

erfc~2z/w!. ~B13!

When uzu!w if we keep terms up to linear first order i
uzu/w we find that

G~w,s,z!512
2

Ap

122s

12s

uzu
w

1OS z2

w2D . ~B14!
r,

jer,

.
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