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Abstract: We study singly-resonant optical parametric oscillators with
chirped quasi-phasematching gratings as the gain medium, for which
adiabatic optical parametric amplification has the potential to enhance
conversion efficiency. This configuration, however, has a modulation
instability which must be suppressed in order to yield narrowband output
signal pulses. We show that high conversion efficiency can be achieved by
using either a narrowband seed or a high-finesse intracavity etalon.
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1. Introduction

Chirped(aperiodic) quasi-phasematching (QPM) gratings have received attention for many
optical frequency conversion schemes including difference frequency generation (DFG), op-
tical parametric amplification (OPA), sum frequency generation (SFG), and related applica-
tions [1–10]. Their main role so far has been to broaden the phasematching bandwidth com-
pared to conventional periodic QPM gratings, without the need to use short crystals with re-
duced conversion efficiency. This broadening can be understood through a simple spatial fre-
quency argument: due to dispersion, there is a mapping between phasematched frequency and
grating k-vector; in chirped QPM gratings, the grating k-vector is swept smoothly over the
range of interest, thereby broadening the spatial Fourier spectrum of the grating and hence the
phasematching bandwidth [1,5–7].

More recently it has been shown that nonlinear interactions in chirped QPM gratings can
exhibit high efficiencies due to an adiabatic following process [1, 2]. For three-wave mixing
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processes involving input pump and signal waves and a generated idler wave, the ratio of pump
outputand input intensities asymptotes to 0 with respect to both the input signal and pump
intensities, i.e. asymptotes to 100% pump depletion. This behavior occurs for interactions that
are both plane-wave and monochromatic, provided that the QPM grating is sufficiently chirped.
For non-diffracting (near-field) beams, all transverse spatial components interact independently
and as plane waves. Thus, for interactions involving non-diffracting beams, all spatial compo-
nents of the pump beam can asymptote to 100% depletion with respect to the pump and signal
powers.

For conventional interactions involving birefringent phasematching or periodic QPM grat-
ings, there is a mapping between signal and pump intensity and the propagation distance re-
quired to fully deplete the pump, defined asLNL; afterLNL, back-conversion occurs, transferring
energy back to the pump from the signal and idler waves [11]. As a result, complete conversion
across the spatial profile of non-diffracting Gaussian beams cannot usually be achieved. Back-
conversion can also limit the conversion efficiency even for plane-wave interactions involving
pulses with bandwidths narrow enough that group velocity mismatch (GVM) and group veloc-
ity dispersion (GVD) effects are negligible, since in this case all temporal components interact
independently in a single pass through the nonlinear crystal. In the spatial domain, the conver-
sion efficiency can be enhanced by using near-confocal focusing [12]; in the time domain, the
conversion efficiency can be enhanced by using pulses with durations short enough that GVM
is non-negligible. For wide (non-diffracting) beams, beam shaping (e.g. flat-top beam profiles)
is required in order to yield anLNL that is independent of transverse spatial position. The use of
chirped QPM gratings offers a way of removing the above limitations on conversion efficiency
of pulsed beams (in both the spatial and temporal domains) without the need for small beam
areas, short pulse durations, or beam shaping.

One example where this efficiency enhancement could be useful is in nanosecond optical
parametric oscillators (OPOs). Optical parametric oscillators have been studied extensively
in many regimes including for continuous wave (CW) pumping [12–19], and for ns pump
pulses [20–25]. Chirped QPM gratings have been used as the gain medium in OPOs [9, 10],
but their properties have not yet been fully explored in the context of adiabatic conversion. In
order to reach the high conversion efficiencies predicted by the plane-wave CW theory (which
we discuss in Section 3 and generate clean output pulses, the OPO signal wave must also be
modulationally stable against noise, so that upon successive trips around the optical cavity it
converges to a pulsed beam with a near-transform-limited spatiotemporal profile. It has been
shown that OPOs using periodic QPM gratings or birefringent phasematching exhibit a tempo-
ral modulation instability (MI) [13]. In this paper, we show that chirped QPM OPOs are even
more susceptible to modulationally instabilities, discuss the suppression of the MI with addi-
tional intracavity elements, and numerically simulate the dynamics of chirped QPM ns-pumped
OPOs.

2. Coupled wave equations

In this section, we introduce coupled-wave equations suitable for analyzing the steady-state,
modulation instability, and nonlinear dynamics of OPOs. The equations we use are quite gen-
eral, allowing for arbitrary QPM grating profiles and including an additional backwards THz
wave which, in recent work [14,18,19], has been shown to influence OPO behavior (though the
MI can exist without the THz interaction). The coupled wave equations we use are similar to
other formulations of pulse propagation inχ(2) media [13,26,27], and can be derived from more
general forward-wave propagation equations [28,29]. The MI analysis we perform follows that
of Ref. [13] quite closely, but here we will consider OPOs using chirped QPM gratings as the
gain medium.
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The coupling between pump, signal, idler and DC envelopes due to the first Fourier order of
theQPM grating is given by the following frequency-domain equations,

L̂iÃi =− iγopt(ω)F [A∗
s Ap]− iγTHz(ω)F [(AT +A∗

T )Ai]

L̂sÃs =− iγopt(ω)F [A∗
i Ap]− iγTHz(ω)F [(AT +A∗

T )As]

L̂pÃp =− iγopt(ω)F [AiAs]− iγTHz(ω)F [(AT +A∗
T )Ap]

L̂T ÃT =− iγTHz(ω)F
[

|Ai|2 + |As|2 + |Ap|2
]

(1)

whereF denotes the Fourier transform, and whereω represents optical frequency (as opposed
to a Fourier transform variable centered at one of the carrier frequenciesω j). Subscriptsi, s,
p andT represent quantities associated with the idler, signal, pump and DC envelopes; we use
subscript “T” because including the DC envelope (centered at zero frequency) leads to phase-
matched THz-frequency interactions. Tilde denotes an envelope represented in the frequency
domain. The envelopesA j are analytic signals (̃A j(ω) = 0 for ω < 0), and are assumed to have
non-overlapping spectra; the use of analytic signals is appropriate in general [28, 30], and is
especially useful for modeling interactions involvingAT . With these constraints, the envelopes
are fully specified via the real-valued electric field which is related to the envelopes by

E =
1
2

[(

Aie
i(ωit−kiz) +Ase

i(ωst−ksz) +Apei(ωpt−kpz)
)

e−i
∫ z
0 ∆k(z′)dz′ +AT e(−i

∫ z
0 Kg(z′)dz′)

]

+c.c., (2)

where c.c denotes complex conjugate. The carrier frequencies areω j. The wavevector is given
by k(ω), and carrier propagation coefficients are given byk j ≡ k(ω j). The QPM grating k-
vector is given byKg(z). We define the material phase mismatch as∆k0 = kp − ks − ki, and the
carrier phase mismatch as

∆k(z) = ∆k0−Kg(z). (3)

The linear propagation operators in Eq. (1) are given for the pump, signal and idler by

L̂ j =
∂
∂ z

+
α(ω)

2
+ i

[

k(ω)−
k2

x + k2
y

2k(ω)
− k j −

ω −ω j

vref

]

− i∆k(z) (4)

for spatial frequencieskx andky, and reference velocityvref, which we choose to be the group
velocity atωs. The form ofL̂ j in Eq. (4) assumes paraxial diffraction in an isotropic medium.
For propagation normal to the optical axis of an anisotropic medium, minor modifications are
required forL j, but these do not significantly change the results of this analysis. For propagation
at finite angles to the optical axis, first-order terms inkx or ky will appear and substantially alter
the results; this case is beyond the scope of this paper. The linear propagation operator for the
DC envelope,̂LT , has a similar form tôL j, modified for a backwards-propagating wave,

L̂T =
∂
∂ z

− α(ω)

2
− i

[

k(ω)−
k2

x + k2
y

2k(ω)
+

ω
vref

−Kg(z)

]

(5)

whereα(ω) is the frequency-dependent power attenuation coefficient. We will neglectα(ω)
at optical frequencies but not at THz frequencies. Finally, the coupling coefficients are given
by γopt(ω) = (ω/c)2(2dopt)/(πk(ω)) andγTHz(ω) = (ω/c)2(2dTHz)/(πk(ω)), wheredopt and
dTHz are the second-order nonlinear coefficients for the optical-optical and optical-THz mixing

#158303 - $15.00 USD Received 16 Nov 2011; revised 23 Dec 2011; accepted 27 Dec 2011; published 19 Jan 2012
(C) 2012 OSA 30 January 2012 / Vol. 20,  No. 3 / OPTICS EXPRESS  2469



processes, respectively, and are determined by the relevant tensor elements and QPM orders.
We assume thatdopt anddTHz are non-dispersive over the frequency ranges of interest.

Equation (1) may be used to evaluate the single-pass propagation for arbitrary OPO config-
urations. With suitable cavity wrapping [20], Eq. (1) can be used to evaluate OPO dynamics
with, for example, semi-classical noise seeding, as we discuss in Section 5.

3. Steady-state solution for chirped QPM OPOs

In this section, we determine the nominal steady-state operating point for CW-pumped, plane-
wave, singly-resonant OPOs when using a chirped QPM grating as the gain medium. The con-
dition for the steady state is that the gain should equal the total cavity losses for the resonant

signal wave. We define envelopesA(0)
j (z) as the steady-state,z-dependent field profiles found

by solving Eq. (1) and imposing self-consistency after a cavity round-trip. These steady-state
solutions are greatly simplified by using the asymptotic expressions for the chirped-QPM signal
gain and pump depletion which apply for sufficiently strongly chirped QPM profiles [1, 2, 4].
For such QPM profiles, the signal power gain in the undepleted-pump limit is given, approxi-
mately, by [4]

Gs ≈ exp(2πΛp), (6)

where the signal gain coefficient is given byΛp = γopt(ωi)γopt(ωs)|A(0)
p (0)|2/|∆k′|, and where

∆k′ = ∂∆k/∂ z is the QPM chirp rate (units of m−2), assumed to be constant near∆k(z) ≈ 0. To

understand this relation, we introduce a peak gain rateg0 = [γopt(ωi)γopt(ωs)]
1/2|A(0)

p (0)|. The
local OPA (power) gain rate is then given in terms of the local phase mismatch byg(z) = 2[g2

0−
(∆k(z)/2)2]1/2. This relation is identical to conventional relations for plane-wave interactions
in unchirped devices at each pointz [31], but isz-dependent here due to the QPM chirp. To find
the total gain, this gain rate is integrated over the region for which Re[g] > 0 (i.e. the region of
the grating for which the phase mismatch is small enough to allow OPA). For a linear chirp rate,
this integration yields Eq. (6); this procedure can be made more formal via WKB analysis [4].
From Eq. (6), the OPO threshold condition is given byΛp,th = ln(R−1

s )/(2π), whereΛp,th is
the threshold signal gain coefficient andRs ≡ 1− as is the effective net round-trip reflectance
(defined in terms of the round-trip signal power loss,as).

Above threshold and assuming low cavity losses so thatA(0)
s (z)≈A(0)

s (0), the pump depletion
is given, approximately, by [1]

ηp ≈ exp(−2πΛs), (7)

where the pump depletion coefficient is given byΛs = γopt(ωi)γopt(ωp)|A(0)
s (0)|2/|∆k′|. The

pump depletion is defined asηp = |Ap(L)/Ap(0)|2. Again assuming low losses, Eq. (6) and
(7) can be used to express the OPO operating point, by equating the decrement to the number
of signal photons lost due to the round trip losses and the increment from the depletion of the
pump, yielding an implicit equation for the pump depletion coefficientΛs,

1−exp(−2πΛs)

2πΛs
=

1
N

(8)

wherethe pump ratioN is the ratio of pump intensity to threshold pump intensity (i.e. the
number of times above oscillation threshold). Based on this equation, the circulating signal
intensity (which is proportional toΛs by definition), and hence the conversion efficiency, are
predicted to increase monotonically with pump intensity. This behavior is illustrated in Fig. 1,
which shows the pump depletion predicted by solving Eq. (8) forΛs as a function ofN. Since
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Fig. 1. (a) Conversion efficiency(1−ηp) as a function of pump ratioN, for the QPM grat-
ing profile shown by the solid blue and red lines in (b); the simulation parameters are given
in the text. The dashed straight line in (b) shows just the linear part of the∆k profile (slope
∆k′) as a guide to the eye. The analytical result from Eqs. (7) and (8), labeled “theory” in
(a) is in good agreement with the numerical solution of Eq. (1), labeled “simulation” in (a).

conversion efficiency increases monotonically with signal and pump power in regimes with
high gain and high pump depletion [2], Eq. (8) qualitatively describes the steady-state OPO
behavior even in the presence of moderate signal losses.

To test the validity of Eq. (8), Fig. 1(a) also shows the pump depletion predicted from direct
simulations of Eq. (1) using a Runge-Kutta method, assuming plane-wave and CW pump, signal
and idler carrier waves; the two are in good agreement, indicating that adiabatic conversion
applies very well to CW OPOs. The QPM profile used for the simulation is shown in Fig. 1(b)
along with the profile of the nonlinear coefficientdeff(z) (normalized to its maximum value at
a 50% QPM duty cycle); the reduction indeff(z) and increase in the chirp rate of∆k(z) at the
edges of the grating are for apodization [4], which is necessary to reach the high efficiencies
predicted by Eq. (8). The functional form of the QPM profile is given by

Kg(z) =kp − ks − ki −∆k′(z−L/2)− Ka

2

[

tanh

(

z− za1

La1

)

− tanh

(

za2− z
La2

)]

, (9)

whichcorresponds to a nominally linear chirp rate∆k′, with an increase in|∆k(z)| near the edges
of the grating. The functional form ofdeff(z) is also given by hyperbolic tangent functions. The
grating length isL, andz = 0 denotes the start of the grating. The chirp rate∆k′ was chosen
such that|∆k′L2|1/2 = 10 for lengthL. This choice smoothly sweeps the carrier phase mismatch
∆k(z) through zero and is sufficient to reveal the important steady-state and MI-related effects
that must be considered in the design of any low-cavity-loss OPO using chirped QPM gratings.
The parametersKa, za1, za2, La1, andLa2 in Eq. (9) are chosen to smoothly turn the idler on
and the pump off at the input and output of the QPM grating, respectively; the quality of this
apodization is manifested in a smooth OPA gain spectrum, with low ripple amplitude [4]. For
Fig. 1(b), the parameters wereL = 5 cm,∆k′=4 cm−2, Ka = 50 cm−1, za1 = 0.1L, za2 = 0.9L,
La1 = 0.05L, andLa2 = 0.05L.

In Fig. 2, we show the steady-state spatial profiles of the fields in an OPO with the QPM
grating given in Fig. 1(b), by plotting the intensitiesI j(z) for the three waves [j = (i,s, p)],
normalized to the input pump intensityI0; for this example, we assumeN = 6 andRs = 95%.
The pump is converted primarily near the center of the QPM grating, where phasematching is
satisfied. Each of the fields is almostπ/2 out of phase with its nonlinear source term throughout
the grating (as opposed to in phase in the case of phasematched interactions in periodic QPM
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Fig. 2. Steady-state intensity profilesI j(z) normalized to input pump intensityI0 for the
OPO simulated in Fig. 1, forN = 6.

gratings), corresponding to adiabatic following of local nonlinear eigenmodes [32,33].
Based on Fig. 1(a), it is possible to significantly exceed the conversion efficiency that can be

obtained with Gaussian beams in periodic QPM gratings or birefringently phasematched media,
without performing any beam shaping, provided that one operates far enough above oscillation
threshold. In the limit of long pulses and large beams, the condition for high conversion effi-
ciency is thatN(x,y) ≫ 1 across most of the spatiotemporal profile of the pump (positionsx
andy). By using a signal cavity mode somewhat larger than the pump beam and a cavity life-
time comparable to or longer than the duration of the pump pulse, this condition is more easily
attained.

4. Temporal MI for chirped QPM OPO

In order to achieve the high conversion efficiency predicted by Fig. 1(a), the OPO steady-state
solution must be stable against the quantum noise present at all frequencies. In this section, we
will show that for any pump ratioN > 1, chirped QPM OPOs exhibit a temporal modulation
instability. In order to yield a single-mode or narrow-band signal, this MI must be suppressed
(by an intracavity etalon, for example).

A general formalism for analyzing the OPO MI is given in Appendix (A), similar to the
approach detailed in Ref. [13]. To calculate the MI gain, we find thez-dependent steady-state
solutions of Eq. (1), and then use Eq. (1) to calculate the single-pass amplification of small side-
bands, detuned from the respective carrier frequencies by an amount±Ω, superposed on each
of the envelopes. We assume thatΩ is positive (without loss of generality), so these sidebands
have absolute optical frequenciesω = ω j ±Ω (for j = i,s, p, corresponding to the idler, signal,
and pump envelopes) andω = Ω (corresponding to the DC envelope,AT ). While the formal-
ism we develop can address the general case of non-collinear sidebands, in this section, we use
that formalism to evaluate the MI of chirped QPM, plane-wave OPOs with collinear sidebands,
i.e. for sideband spatial frequencykx = ky = 0. For simplicity we consider the profile given
by Eq. (9). Different grating profiles will exhibit comparable behavior provided that the phase
mismatch is swept smoothly, monotonically, and slowly through zero, and has sufficiently large
magnitude atz = 0 andz = L.

Figure 3(a) shows the frequency dependence of the net sideband gain (assuming out-coupling
and cavity losses totaling 5%) associated with the steady state solutions. For the simulation, we
choseλp = 1.064 µm, λs = 1.55 µm, and the temperatureT = 150◦ C, and use the nonlinear
coefficients and dispersion relation of MgO:LiNbO3 [34,35]. For any given pump ratioN, there
is a range of frequencies for which there is MI gain (G> 0). Therefore, this OPO would not
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Fig. 3. (a) Dependence of sideband gainG on pump ratioN for the OPO simulated in
Fig. 1. (b) Propagation of the signal, idler and pump sidebands for the highest-gain signal
eigenmode atΩ/(2π) = 1 THz andN = 6. The sidebands are normalized such that|a−s |2+
|a+

s |2 = 1 atz = 0.

operate in a single mode. The MI is not an artifact of the particular parameters used for Fig.
3(a), but occurs for many resonant wavelengths and chirp rates, provided that there is a sufficient
grating chirp for adiabatic conversion to occur. However, the structure of the net sideband gain
does depend on the material dispersion, as with conventional OPOs [13].

In Fig. 3(a), the peak around 1.38 THz is related to the strongly-absorbed backwards THz

wave. At this frequency, the interaction between theA(0)
s , a(−)

s , anda(+)
T waves is phasematched,

leading to optical parametric amplification at the Stokes-frequency-shifted signal sidebanda(−)
s ;

we denote this process as THz-OPA. In the limit of a large THz absorptionαT , the THz-OPA
gain is inversely proportional toαT [14], and the THz-OPA process is similar to stimulated
Raman scattering. SinceαT is large in LiNbO3 at 1.38 THz [35], the THz peak in Fig. 3(a)
is damped substantially compared to predictions if absorption was neglected. However, despite
this damping, the signal sideband gain still exceeds the cavity losses. For materials with a higher
THz absorption, the strength of the THz-OPA peak compared to the other features seen in Fig.
3(a) would be reduced.

Away from 1.38 THz, the THz-OPA process is highly phase mismatched and can be ne-
glected. As a result, in most spectral regions, the MI corresponds to the pump, signal and idler
three-wave mixing process [13]. This process is illustrated in Fig. 3(b), which shows the prop-
agation of sidebands through the QPM grating (sidebands detuned from carrier frequencies
by ±1 THz). The generation and amplification of these sidebands can be understood through
phasematching arguments: the phase mismatch for an interaction between a pair of sidebands
and a carrier wave can be defined as the phase accumulated by one of those sidebands relative to
the phase of its driving polarization, assuming that the sidebands were to propagate linearly (i.e.
with phases unperturbed byχ(2)). Consider the interaction between an idler sideband ˜ai(∓Ω),

a signal sideband ˜as(±Ω), and the pump wave carrierA(0)
p . Based on the above assumption, the

phase mismatch for this process is given by

∆kis,eff(z,±Ω) ≈ ∆k(z)− ∂φp

∂ z
±

(

ng,i −ng,s

c

)

Ω, (10)

whereng, j is the group index of wavej, andφ j is the phase of carrier waveA(0)
j (z); higher

orders of dispersion have been neglected for simplicity. The carrier phase mismatch∆k(z) is
given by Eq. (3). Similarly, for the interaction between a signal sideband ˜as(±Ω), a pump
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sideband ˜ap(±Ω), and the idler carrier waveA(0)
i , the phase mismatch is given by

∆ksp,eff(z,±Ω) ≈ ∆k(z)+
∂φi

∂ z
±

(

ng,p −ng,s

c

)

Ω. (11)

Lastly, for an interaction between an idler sideband ˜ai(±Ω), a pump sideband ˜ap(±Ω), and

the signal carrier waveA(0)
s , the phase mismatch is given by

∆kip,eff(z,±Ω) ≈ ∆k(z)+
∂φs

∂ z
±

(

ng,p −ng,i

c

)

Ω. (12)

For the example in Fig. 3(b), the sideband frequency is 1 THz, and the group indices for the
idler, signal and pump waves are given 2.2081, 2.1795, and 2.2091, respectively. The carrier
wave phase accumulation can often be neglected, since the steady-state fields only accumulate
phase rapidly when the field amplitude is low compared to the other two waves; such fields do
not contribute strongly to the sideband generation process. The apodization regions can also
be neglected for simplicity, since only weak sideband generation can occur there due to the
high chirp rate. With these assumptions, for the interaction between signal and idler sidebands,
∆kis,eff(z,+Ω) = 0 at z = zpm,is(+Ω) ≈ −0.3L, where the pump is undepleted [see Fig (2)].
For the interaction between idler and pump sidebands,∆kip,eff(z,±Ω) = 0 atz = zpm,ip(±Ω) ≈
∓0.01L, which involves the strong steady-state signal field. For the interaction between signal
and pump sidebands,∆ksp,eff(z,−Ω) = 0 at z = zpm,sp(−Ω) ≈ 0.31L; this interaction involves
the steady-state idler field, which is strong atzpm,sp(−Ω).

The above considerations explain why the signal sidebands can experience gain greatly in
excess of the signal carrier wave: at most points in the QPM grating, one of the pairs of side-
bands is close to phasematching and is driven strongly by the corresponding steady-state field;
the sidebands can thus arrange themselves for strong sideband amplification and generation
over much of the grating due to the existence of multiple phasematched points for the various
sideband mixing processes; this amplification can be seen in Fig. 3(b). These processes are in
contrast to the interaction between the carrier waves, in which the signal is amplified only in the
vicinity of the single phasematched point where∆k(z) = 0 (and in which each of the waves is
nearlyπ/2 out of phase with its nonlinear source term due to the adiabatic following process).

The type of behavior discussed in this section, where the QPM chirp reduces the gain for the
CW signal wave compared to a parasitic process (in this case, sideband amplification), has also
been seen in the spatial domain when using finite-sized beams [3, 7]. In general, it may also
be necessary to consider additional nonlinear processes such as stimulated Raman scattering
(SRS) for which amplification occurs over the entire length of the QPM grating; SRS would be
relevant in cases where the cavity losses are low at any Stokes-shifted wavelengths. Additional
waves and nonlinear effects can be added relatively straightforwardly to Eq. (21) [28].

In order to build an OPO with narrow-band, low-noise output signal pulses, the modula-
tion instability must be adequately suppressed. One way to suppress the MI is by introducing
an intracavity element such as an etalon to create loss selectively at the sideband frequencies,
such thatG(Ω) < 1 for all sideband frequency detuningsΩ. Thus, if an etalon is used, the free
spectral range should be comparable to the MI gain bandwidth [as shown in Fig. 3(a) for a par-
ticular example], and the finesse must introduce sufficient loss at sideband frequencies within
this spectral region thatG(Ω) < 1. The required etalon facet reflectanceR to fully suppress the
MI can be estimated as[(1−R)/(1+R)]2 = (G0)

−1, whereG0 denotes the peak MI gain in the
absence of the etalon. In cases where the design parameters of a single intracavity etalon would
be too constrained, multiple etalons or the combination of an etalon and a diffraction grating
could be used.
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For a CW OPO,G < 1 is necessary to avoid sideband amplification in the steady-state.
Based on Fig. 3(a), a high reflectance etalon (e.g. withR > 75%) is needed. This reflectance
is significantly higher than that required to yield stable operation of CW-pumped OPOs using
periodic QPM gratings, for which Fresnel reflections from uncoated optics are sufficient [13].
For nanosecond pump pulses, the sidebands are amplified or suppressed over several cavity
round-trips (corresponding to the duration of the pump), and hence the signal spectrum will
continue to narrow asG is reduced. Conversely, it may not be necessary to fully suppress the MI
within the etalon peak corresponding to the signal carrier frequency in order to achieve adiabatic
conversion. The design issues associated with nanosecond-pumped chirped QPM OPOs are
discussed in Section 5.

5. Numerical simulation of chirped QPM OPOs

The OPO efficiency enhancements made possible by chirped QPM gratings are likely to be
most advantageous when using a pulsed pump, since high efficiencies are already possible for
CW-pumped OPOs by appropriate near-confocal resonator design [12]. The OPO configuration
where Eq. (8) can apply most directly is for nanosecond pump pulses, for which dynamical ef-
fects including group velocity mismatch and dispersion (GVM and GVD) can, in the ideal limit,
be neglected. However, to determine if this narrow-bandwidth limit applies, GVM- and GVD-
related effects must be modeled using Eq. (1), together with an appropriate cavity-wrapping
procedure [21]. In this section, we perform numerical simulations of a ns-pulse plane-wave
OPO with and without an intracavity etalon, in order to see the role that the MI plays when
using nanosecond pump pulses.

5.1. Design considerations

When using nanosecond pulses, a number of design constraints must be met, which we outline
here. First, the signal must build up from quantum noise to have comparable power to the
pump in a reasonably small fraction of the pump duration (since the pump remains undepleted,
and hence the operation is inefficient, before signal build-up). To quantify this constraint, we
first define the round-trip number as the ratio of pump duration to the cavity round-trip time,
Nrt = τp/trt . For largeNrt , the time-dependent signal intensity during the build-up stage can be
expressed approximately as

ln

(

I(t)
I0

)

≈ Nrt

∫ t

t0

2πΛp,pk fp(t ′)− ln(1/Rs)

τp
dt ′, (13)

where the 2πΛp,pk is the signal gain coefficient associated with the peak of the pump pulse,
and fp(t) is the pump intensity profile normalized to its peak value, and takes values between
0 and 1.t0 is the time at which gain exceeds the cavity loss (i.e. where the integrand crosses
zero), andI0 is an effective input noise intensity. The 2πΛp,pk factor originates from Eq. (6).
A second OPO constraint is that the signal should have a cavity lifetime comparable to the
pump duration, in order to ensure depletion of the trailing edge of the pump. This constraint is
described in terms ofNs, the ratio of pump duration to the signal-cavity lifetime, given by

Ns ≡ ln(1/Rs)Nrt . (14)

In generalNs should be of order unity. A third OPO constraint is that the pump should be
intense enough to support adiabatic conversion on its leading edge, based on Eq. (8), and hence
Npk, the ratio of the signal gain at the peak of the pump pulse to the round trip cavity losses,
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Fig. 4. Output pulses for a chirped QPM OPO with CW-signal-seeding. Simulation pa-
rametersare given in the text. (a) Signal and pump intensitiesI(t) in the time domain,
normalized to the peak input pump intensityI0. The inset shows the normalized output
pump fluenceW (t), defined in Eq. (17). (b) Signal spectrum, with frequency normalized to
the bandwidth of the Gaussian pump pulse (1/e2 durationτp) and centered atωc, which is
defined as the centroid of the signal spectrum.

should satisfy

Npk ≡
2πΛp,pk

ln(1/R)
≫ 1. (15)

Equations (13-15) can be satisfied for anyNrt by choosing appropriate values ofΛR,pk andRs,
although a more careful analysis is needed for cases whenNrt 6≫ 1. AssumingNrt ≫ 1, the next
consideration is the signal linewidth. For OPOs with a largeNpk, the MI might not be suppressed
for cavity modes near the relevant etalon peak (due to the finite etalon finesse), and in this case
the signal bandwidth is comparable to the etalon bandwidth. Only one etalon peak should lie
within the OPO acceptance bandwidth. This acceptance bandwidth can be approximated as
2π∆ fBW ≈ |(∆k′L)/(δng/c)|, whereδng = ng(ωs)− ng(ωi) for group indexng(ω). Thus, the
etalon free spectral rangeffsr can be constrained according to

ffsrtrt ≈
∣

∣

∣

∣

∆k′L2

2π
ng(ωs

δng

∣

∣

∣

∣

. (16)

In order to achieve adiabatic conversion in an apodized chirped grating of the kind described
by Eq. (9), it is necessary to have|∆k′L2| ≈ 102, as discussed in Section 3 (although the required
grating k-space bandwidth can be reduced slightly by using nonlinear chirp profiles). Hence, in
typical cases, the required free spectral range of the etalon satisfiesffsrtrt ≈ 103. If the minimum
etalon length is constrained (e.g. to tens ofµm), then Eq. (16) also limits the minimum length
of the QPM grating. Therefore, in the following numerical example, we will use a relatively
long QPM grating (5 cm) and a pump pulse duration of 15 ns, long enough thatNrt ≫ 1. The
final design parameter is the etalon finesse, the effects of which can be explored numerically.

5.2. Numerical example

In this subsection, we show plane-wave numerical examples with a nominal OPO design chosen
via the constraints discussed in Subsection 5.1. We assume a 1064-nm-wavelength Gaussian
pump pulse with 1/e2 duration of 15 ns and a peak intensity of 32 MW/cm2. The grating length
is 5 cm with a chirp rate of 4×104 m−2 (except in the apodization regions) and a QPM period
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Fig. 5. Output pulses for a chirped QPM OPO with the same parameters as those used in
Fig. 4, but with white-noise seeding. (a) Signal and pump intensities in the time domain,
I j(t) ( j = s, p), normalized to the peak intensity of the input pump pulse,I0. The inset shows
W (t). (b) Signal spectrum, with frequency normalized to the OPO acceptance bandwidth
∆ fBW (≈ 3.35 THz in this case) and centered atωs, the signal frequency phasematched at
the center of the QPM grating.

chosen to phasematch a 1550-nm-wavelength signal in the middle of the grating; the grating
has a similar profile to the example shown in Fig. 1(b). The round-trip losses were taken to be
19%. With these parameters,Nrt ≈ 20.5, Λp ≈ 0.95, and hence the peak times above threshold
Npk ≈ 28. For cases when an intracavity etalon is included, the etalon has a free spectral range
of 2 THz and a power reflectance of 64% on each facet. The corresponding etalon bandwidth
is ∆ fet ≈ 120 GHz, and the productffsrtrt ≈ 1450. The value|(∆k′L2ng,s)/(2πδng)| ≈ 1200, as
discussed in relation to Eq. (16). The simulations use a method similar to the one described in
Ref. [20]; the THz wave is neglected.

When the OPO is seeded with a CW signal whose intensity exceeds that of the quantum noise
floor, the pump is highly depleted after the initial signal power build-up. This case is shown in
Fig. 4, where we assume a signal seed intensity of 1 W/cm2 and include an intracavity etalon.
The pump is highly depleted after the initial signal build-up. The later parts of the pump pulse
are also strongly depleted, since the signal-cavity lifetime is comparable to the pump duration.
The inset shows the normalized output pump fluence, which we define as

W (t) =

∫ t
−∞ Ip(L, t ′)dt ′

∫ ∞
−∞ Ip(0,t ′)dt ′

. (17)

After the signal begins to saturate the pump, no further pump energy is transmitted, so the
transmitted fluence is limited. This example demonstrates an efficiency enhancement analogous
to those predicted by Fig. 1 and Eq. (8), but modified in the presence of a nanosecond Gaussian
pump pulse instead of a CW pump. In each pass through the QPM grating, different temporal
components of the signal pulse experience adiabatic conversion almost independently, since the
pulse bandwidth is much narrower than the bandwidth of any effects related to GVM and GVD.
Note that for very high intensities, an intracavity etalon is required in order to suppress the MI
even with a CW signal seed, due to the finite bandwidth of the pump; the etalon described above
was thus included in the simulations for Fig. 4.

In contrast to the CW case or the pulsed case with a monochromatic seed, in a ns-pumped
OPO seeded with white noise the adiabatic conversion process no longer occurs. Since there
is a MI at all pump ratiosN > 1, noise-seeded signal sidebands are amplified over most of the
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Fig. 6. Output pulses for a chirped QPM OPO with the same parameters as those used
in Fig. 5, but with an intracavity etalon (free spectral range 4.15 THz). (a) Signal and
pump intensities in the time domain,I j(t) ( j = s, p), normalized toI0. The inset shows
W (t). (b) Signal spectrum, with frequency normalized to the bandwidth of the etalon peaks,
∆ fet = fsret(1−Ret)/(2π) for etalon reflectanceRet and free spectral range fsret. ∆ fet≈ 120
GHz in this case. (c) Output pump intensityIp(t)/I0 for the case shown in Fig. 6(a), plotted
over a limited temporal range to show pulsing behavior; the pulses correspond to regions
in which adiabatic conversion does not occur. The time axis is normalized to the signal
round-trip time: the pulse pattern is slightly modified after each signal round trip through
the cavity.

pump pulse. A typical signal spectrum corresponding to a single simulation with a white-noise-
seeded signal is shown in Fig. 5(b). The spectrum fills the OPO acceptance bandwidth, which
corresponds to several THz. The corresponding transmitted signal and pump intensitiesI j(t)
are shown in Fig. 5(a). The conversion efficiency associated with this example is significantly
reduced compared to Eq. (4) because the smooth signal phase profile required for adiabatic
following is no longer present due to seeding with noise rather than a single frequency. This
reduction in efficiency can be seen in the inset of Fig. 5(a), which plotsW (t).

From the results of Section 4, it is necessary to use an intracavity element such as an etalon
to suppress the MI or limit the frequency range over which there is MI gain, and thereby allow
adiabatic conversion to occur. This approach is shown in Fig. 6, where an etalon is added to
the cavity: this allows the adiabatic conversion efficiency behavior to re-emerge [Fig. 6(a)]
even in the presence of a noise seed, by narrowing the signal bandwidth [Fig. 6(b)]. The noise
suppression is not complete; the remaining signal noise leads to an output pump which consists
of many short pulses which correspond to time intervals in which adiabatic conversion does not
occur. The slight reduction in conversion efficiency associated with these output pump pulses
can be seen fromW (t), which is plotted in the inset of Fig. 6(a): after saturation, the (average)
slopedW (t)/dt is positive but small compared to the slope shown in Fig. 5(a). The structure of
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the output pump pulses is shown in Fig. 6(c), whereIp(t)/I0 is plotted over a limited temporal
region. These output pump spikes correspond to the finite bandwidth of the signal shown in
Fig. 6(b), and repeat (approximately) every round-trip time. Conventional nanosecond OPOs
can exhibit a similar self-pulsing behavior [20, 23]. Nonetheless, the pump is highly depleted
over most of its temporal profile, showing that adiabatic operation of an OPO can be effective
even with a noise seed, if a suitable bandwidth-limiting filter is included in the cavity.

The same procedures we have discussed here (identification of an MI and its severity, and
calculation of the required etalon properties) could be used at other operating points besides
the case simulated in Figs. (4-6). Generally, the etalon finesse required to suppress the MI will
scale withN, the suppression of spectral sidebands will scale with this finesse and withNrt , and
the MI gain bandwidth (and hence the etalon’s required free spectral range) will scale with the
OPO signal-idler acceptance bandwidth. If the etalon has a large enough free spectral range that
only one etalon peak lies within the OPO acceptance bandwidth but has an insufficient finesse
to fully suppress the MI within that peak, the signal bandwidth is comparable to the etalon
bandwidth∆ fet. To suppress the pump pulsing, a higher finesse etalon could be used; to yield a
single- or few-mode signal via intracavity filters with realistic parameters, multiple filters (e.g.
a grating and an etalon) or injection seeding might be required.

6. Conclusions

The use of Gaussian beams and unchirped QPM or birefringently phasematched media im-
pose a fundamental limitation to the conversion efficiency of singly-resonant OPOs in the
non-diffracting regime due to back-conversion. By using a chirped QPM grating, this limi-
tation could be evaded via the adiabatic conversion process, allowing for a broadly tunable,
high-power-spectral-density mid-infrared source. However, the modulation instability we have
described in this paper must be suppressed or avoided if such an OPO is to exhibit useful adi-
abatic pump conversion. One possible approach is to use a CW or narrowband laser as a seed.
Another, simpler approach is to use a high-finesse intracavity etalon in order to suppress the
unstable spectral sidebands. When operated several times above oscillation threshold with such
an etalon, almost all of the pump pulse can be down-converted to the signal and idler waves,
even with a Gaussian or other non-flat-top pump pulse profile. The etalon is constrained to have
both a relatively high finesse and free spectral range. An alternative approach might be to use
multiple intracavity elements to suppress the MI, such as a diffraction grating (to suppress the
MI at high sideband frequency detunings) and a longer etalon (to yield a narrow-band signal);
with this approach, there would be less stringent design constraints on the etalon.

In this paper we considered the temporal MI of chirped QPM OPOs, but not the spatial
MI effects, i.e. the amplification of signal sidebands with non-zero transverse spatial frequency
which can also be present, even at temporal frequencies degenerate with the carrier fields [7,36].
A discussion of these effects is beyond the scope of this paper. Spatial MIs can be calculated
with the approach discussed in appendix (A) by settingk2

x + k2
y > 0. This type of MI could be

suppressed by moderate signal focusing with non-planar cavity mirrors in combination with a
spatial filter; for very wide beams, unstable cavity configurations might be used. Spatial MIs
and other focusing effects in chirped QPM interactions will be the subject of future work.

The temporal MI we have considered is directly applicable to OPOs which use a narrowband
pump. In synchronously pumped OPOs with ps or fs pump pulses with bandwidths comparable
to the OPO acceptance bandwidth, the MI would be altered, and may be relevant to explaining
the fluctuations observed in Ref. [37]. Finally, the interaction between the effects discussed here
andχ(3) self phase modulation effects could lead to new and interesting types of OPO-based
frequency combs.
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A. Modulation instability for CW OPO

In this appendix, we develop a formalism for evaluating the MI of the steady-state OPO solu-
tions found in Section 3, based on the coupled wave equations of Section 2. To calculate the MI
gain, we follow the approach of Ref. [13]: we assume leading-order fields that are both plane-
wave and monochromatic, and find thez-dependent field profiles which satisfy self-consistency
in amplitude and phase after a single cavity round-trip. We then assume weak time-dependent
perturbations around these zeroth-order solutions and solve the linear system which results
from neglecting products of the perturbations, or sidebands,a j. The envelopes are assumed to
have the form

A j(r, t) = A(0)
j (z)+a j(r, t) (18)

for zeroth-order fieldsA(0)
j (z) and perturbationsa j(r, t). The zeroth-order fieldsA(0)

j have opti-
cal frequenciesω j and have spatial frequencieskx = ky = 0.

For a particular input pump field and vanishing idler input, amplitude self-consistency of

the zeroth-order fields requires that|A(0)
s (L)|R1/2

s = |A(0)
s (0)| for net round-trip signal-power

reflectanceRs; this relation determines|A(0)
s (0)| as a function of|A(0)

p (0)|, and hence as a func-
tion of the pump ratioN, for a given system. We assume that the signal carrier frequency cor-
responds to an axial mode of the cavity [15,38]. Therefore, the cavity adds an additional phase
such that the phase of the electric field,Ẽs(ωs), is also self-consistent after a cavity round-trip.

AlthoughA(0)
j are found numerically via Eq. (1), the simple relations in Section 3 provide useful

estimates of how these fields behave.
To describe how the sideband amplitudesa j are coupled to each other in the presence of the

zeroth-order fields, we define spatial frequency vectork⊥ = kxx̂+ kyŷ and sideband frequency

Ω = |ω −ω j|. Because we assumekx = ky = 0 for A(0)
j , thea j can only be coupled together

in a limited number of ways. To write down the coupling matrix, we first introduce a short-

hand notation for the sidebands:a j(z;k⊥,Ω) ≡ a(+)
j anda j(z;−k⊥,−Ω) ≡ a(−)

j . The sideband
frequencyΩ ≥ 0, whilekx andky can be positive or negative. We now define a sideband vector

ṽ(k⊥,Ω)T ≡
[

ã(−)∗
i ã(+)

i ã(−)∗
s ã(+)

s ã(−)∗
p ã(+)

p ã(+)
T

]

, (19)

where the dependencies of ˜a(±)
j on z, k⊥, andΩ have been suppressed. For the DC envelope,

only ã+
T is included in Eq. (19), due to the use of analytic signals for each of the envelopes; as

such, it is implicitly assumed thatΩ < ω j for j = (i,s, p) (an appropriate assumption when the
OPO acceptance bandwidth is much less than the pump, signal and idler carrier frequencies,
which is almost always the case). Propagation for this sideband vector is described by a linear
system,

dṽ
dz

= M(z)ṽ (20)

whereM(z) is a 7x7 coupling matrix which depends on the frequency-domain arguments as
well asz. Due to the assumed axial symmetry of the problem, the same coupling matrix applies
to bothṽ(+k⊥,Ω) andṽ(−k⊥,Ω) for arbitraryk⊥. The coupling matrixM(z) has a form similar
to the one introduced in Ref. [13], but with extra elements for the THz sidebanda+

T associated
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with the DC envelopẽAT in Eq. (1),

M(z) =

i



























−Ki,− 0 0 κ−
i,oA(0)∗

p κ−
i,oA(0)

s 0 κ−
i,TA(0)∗

i

0 −Ki,+ −κ+
i,oA(0)

p 0 0 −κ+
i,oA(0)∗

s −κ+
i,TA(0)

i

0 κ−
s,oA(0)∗

p −Ks,− 0 κ−
s,oA(0)

i 0 κ−
s,TA(0)∗

s

−κ+
s,oA(0)

p 0 0 −Ks,+ 0 −κ+
s,oA(0)∗

i −κ−
s,TA(0)

s

κ−
p,oA(0)∗

s 0 κ−
p,oA(0)∗

i 0 −Kp,− 0 κ−
p,TA(0)∗

p

0 −κ+
p,oA(0)

s 0 −κ+
p,oA(0)

i 0 −Kp,+ −κ+
p,TA(0)

p

κT A(0)
i κT A(0)∗

i κT A(0)
s κT A(0)∗

s κT A(0)
p κT A(0)∗

p −KT,+



























(21)

where the elements of this matrix are defined in terms of the operators and coefficients
of Eq. (1), with κ±

j,o = γopt(ω j ± Ω), κ±
j,T = γTHz(ω j ± Ω), κT = γTHz(Ω), K j,±(z,Ω) =

±[k(ω j ± Ω) − k(ω j) − (k2
x + k2

y)/(2k(ω j ± Ω)] − Ω/vref ∓ ∆k(z), and KT,+ = iαT /2 −
[

k(Ω)− (k2
x + k2

y)/(2k(Ω))+Ω/vref−Kg
]

. The diagonal elements ofM are determined by the
linear differential operatorŝL j [Eqs. (4) and (5)], while the off-diagonal elements determine
coupling between the sideband vectors due toχ(2) interactions. For chirped QPM gratings, all
the non-zero elements ofM arez-dependent.

The last step in calculating the MI is to calculate a total round-trip matrix which propagates
the sideband vector ˜v through a full cavity round-trip. For the MI of a singly-resonant OPO
where the idler and pump fields and their sidebands have zero feedback, only the 2x2 submatrix
related to the signal, denoted ˜vs, must be considered. The phase and amplitude response of the
cavity at frequencyωs are fixed by self-consistency (in a real OPO, self-consistency would
determineωs; for this theoretical study, it is convenient to fixωs and slightly adjust the cavity
length accordingly). Therefore, the round-trip signal-sideband matrix is given by

Φrt(Ω) =
√

Rs

[

h̃∗(−Ω)eiφs 0
0 h̃(Ω)e−iφs

][

Φ3,3(L,0) Φ3,4(L,0)
Φ4,3(L,0) Φ4,4(L,0)

]

, (22)

where the state transition matrixΦ is defined usingM(z) and Eq. (20) as ˜v(z′)=Φ(z′,z)ṽ(z). The
2x2 submatrix ofΦ(L,0)appearing in Eq. (22) corresponds to the outputs at the signal sideband
frequencies resulting from inputs at those frequencies. The output phase of the zeroth-order

signal,A(0)
s (L)/A(0)

s (0), is defined asφs. To account for intracavity elements a normalized cavity
transfer functionh̃(Ω) = H̃(Ω)/H̃(0) has been introduced in terms of the transfer function
H̃(Ω) associated with the cavity excluding the QPM grating;h̃ would include any intracavity
etalon, for example. Note that since the THz wave propagates backwards, its absorption appears
mathematically as a “gain” in Eqs. (20) and (21). As a result, it is useful numerically to first
solve Eq. (20) by propagating backwards (finding a matrix giving ˜v(z = 0) in terms of ˜v(z = L)),
and then findΦ by matrix inversion.

There are two eigenvalues ofΦrt , denotedλΦ, j for j = 1 andj = 2. Modes of the “hot” cavity
are those frequencies for whichλΦ, j are real; these frequencies can differ from the frequencies
of the “cold” cavity modes as a result of phase shifts due to the three-wave interaction, and
due to coupling between frequencies at+Ω and−Ω. Exponential growth (MI) of such a cavity
mode occurs whenλΦ, j(Ω) > 1, for somej and someΩ. We assume that the cavity modes
are closely-spaced in frequency compared to the variation of the eigenvalues with sideband fre-
quencyΩ; therefore, we can define the MI condition as|λΦ, j| > 1. A more detailed description
of the MI calculation is given in Ref. [13].
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