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Broadband quasi-phase-matched second-harmonic
generation of ultrashort optical pulses

with spectral angular dispersion
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Noncollinear quasi-phase matching, in combination with spectral angular dispersion, can be used to broaden
the bandwidth of second-harmonic generation (SHG) beyond the bandwidth for collinear, nondispersed inter-
actions. A general theoretical treatment is presented, in addition to a solution that predicts the generated field
for the case of a Gaussian input field; a comparison is made between this technique and others available for
broadband SHG. An experiment in periodically poled lithium niobate demonstrates SHG of a 138 fs pulse at
1550 nm in a 1 cm length crystal (with a collinear acceptance bandwidth 13 times narrower than the first-
harmonic bandwidth) with minimal spectral narrowing. © 2005 Optical Society of America

OCIS codes: 190.7110, 190.4360.
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. INTRODUCTION
aser gain media capable of short-pulse generation are
vailable over only a small portion of the optical spec-
rum, whereas applications from spectroscopy to high-
eld science and optical communications often require
ulses in inaccessible spectral regions. Nonlinear fre-
uency conversion of short pulses can fill these spectral
egions. To preserve the short-pulse duration, the accep-
ance bandwidth of a nonlinear interaction must match or
xceed the bandwidth of the input pulse. In this paper we
iscuss ultrashort-pulse second-harmonic generation
SHG).

In addition to a broad bandwidth, high conversion effi-
iency is also desired. The conversion efficiency of conven-
ional collinear SHG in uniform nonlinear materials is
roportional to the square of the interaction length, but
he bandwidth is inversely proportional to the same inter-
ction length, resulting in a trade-off between conversion
fficiency and bandwidth. Several methods have been
emonstrated to reduce or eliminate this trade-off.
In the simplest collinear interactions (type 0 quasi-

hase-matched SHG or type I and type II birefringent
hase-matched SHG), the bandwidth of SHG is limited by
he difference in group velocity between the first-
armonic (FH) and second-harmonic (SH) wave.1,2 A FH
ave packet traveling through a nonlinear medium will

ead or lag (depending on the shape of the dispersion
urve) the generated SH wave that travels at a different
roup velocity because of dispersion in the group index of
he nonlinear medium. In a crystal longer than a walk-off
ength (the crystal length that results in a difference in
roup delay equal to the FH pulse width) this velocity
ismatch results in a SH pulse that is significantly

onger than the FH input, or in the frequency domain has
significantly narrower bandwidth. Consequently, to pre-

erve the bandwidth of the SH wave, the maximum crys-
0740-3224/05/081699-15/$15.00 © 2
al length is approximately limited to the walk-off length.
reduced mismatch between group velocities of the inter-

cting waves results in a longer maximum interaction
ength.2

Occasionally, nature provides perfect matching of the
roup velocities of FH and SH waves for a particular pair
f frequencies in a nonlinear medium. This is not, in gen-
ral, the same frequency for which the phase velocities
re matched, but with quasi-phase matching (QPM) it is
ften possible to simultaneously quasi-phase match and
roup-velocity match a SHG interaction at a particular
H frequency in a given nonlinear material. For example,

n lithium niobate, the FH and SH group velocities are
atched in a type 0 �e+e→e� interaction at a FH wave-

ength near 2.6 �m.3 This method for group-velocity
atching is available only at specific frequencies deter-
ined by the dispersion of the nonlinear material and
ay not be generally applicable across the material’s

ransparency window. Nevertheless, group-velocity-
atched SHG has been demonstrated in a variety of ma-

erials utilizing both birefringent phase matching and
PM.4–9

A more general technique for broadband SHG has been
emonstrated through longitudinal patterning of a QPM
rating.10,11 Longitudinal variation of the QPM period
rovides for localized conversion of the different fre-
uency components of a short pulse at different positions
long the propagation axis of a nonlinear device. A distri-
ution of QPM periods allows for a broader distribution of
hase-matched frequencies and an increased bandwidth
ompared with a uniform grating of the same length. The
ocalized frequency conversion in the presence of a differ-
nce in group velocity between FH and SH waves results
n a chirped SHG transfer function.2 Consequently, al-
hough the SHG of a transform-limited FH pulse that is
sed with a chirped QPM grating may preserve the band-
005 Optical Society of America
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idth, the pulse width will not be preserved. The result-
ng chirped SH pulse may, however, be compressed to the
ransform limit by use of a dispersive element.

A fourth technique, the topic of this paper, makes use of
pectral angular dispersion in a noncollinear geometry to
roaden the bandwidth of ultrashort-pulse SHG. In a
ritically phase-matched continuous-wave (cw) interac-
ion, the phase-matching wavelength depends linearly on
he angular detuning of the nonlinear crystal. Decompos-
ng a broadband FH field into plane waves, we find that
ngular dispersion programs frequency-dependent angu-
ar detuning into the FH field, effectively broadening the
cceptance bandwidth. The idea of using spectral angular
ispersion to broaden the phase-matching bandwidth was
rst proposed in the 1970s to broaden the bandwidth of
w SHG12–14 and was later suggested for short-pulse
pplications.15,16 Variations of this technique have been
iscussed theoretically17,18 and verified experimentally
or both broadly tunable cw SHG19,20 and for ultrashort-
ulse generation16,21,22 in birefringently phase-matched
onlinear materials. Angular dispersion applied to pulsed
HG in quasi-phase-matched materials was first pre-
ented in Ref. 23, including calculations for the device
onfiguration specific to periodically poled lithium niobate
PPLN), which we experimentally verify in this study. In
ddition, we expand on established theory to include a de-
ailed discussion of the conversion efficiency and limita-
ions imposed by diffraction and spatial walk-off.

The remainder of this paper is devoted to the demon-
tration and analysis of broadband SHG of ultrashort op-
ical pulses in the presence of spectral angular dispersion.
n Section 2 we describe a frequency-domain technique of
sing spectral angular dispersion in a noncollinear geom-
try to compensate for material dispersion in SHG. This
echnique is equivalent to the matching of the FH and SH
roup velocities in the time domain using a tilted pulse
ront, as illustrated in Section 3. In Section 4 we present
n experimental demonstration of broadband SHG with
pectral angular dispersion. In Section 4 we demonstrate
roup-velocity-matched SHG in PPLN, motivating the de-
elopment of a deeper theoretical understanding of the
onversion efficiency in this noncollinear geometry. It is
his theoretical treatment that occupies the later sections
f this paper.

In Section 5 we derive the scalar wave equations for
oncollinear SHG assuming an undepleted pump and in-
luding the effects of dispersion, diffraction, and spatial
alk-off. In Section 6 we present a general solution to

hese equations, and in Section 7 we discuss the solution
n the particular case of a Gaussian FH field envelope. In
ection 8 we describe the effects that group-velocity dis-
ersion (GVD) and spatial walk-off have on the SH field
redicted by the results presented in Section 7. In Section
we present the conversion efficiency in the limit of neg-

igible spatial walk-off and diffractive effects and compare
he resulting expression to the efficiency for other tech-
iques for ultrashort-pulse SHG. In Section 10 we discuss
he scaling of conversion efficiency with regard to focusing
nd spatial walk-off and the trade-offs between beam
uality and size and conversion efficiency that result from
ight focusing or increased phase-matching angle. Finally,
n Section 11 we summarize the results of this paper.
. FREQUENCY-DOMAIN DESCRIPTION
onsider a FH plane wave with wave vector k��� and fre-
uency � generating a SH plane wave with wave vector
�2�� and frequency 2� inside a QPM grating with grat-

ng vector Kg. The grating vector is in a direction normal
o the QPM grating lines and has magnitude Kg=2� /�,
here � is the QPM period.1 This geometry is shown

chematically in Fig. 1. The angle � is measured between
��� and Kg, and � is measured between k��� and k�2��.
he wave-vector mismatch is defined as the vector sum
k���=2k���−k�2��+Kg. The interaction is quasi-phase
atched at frequency � when �k���=0. QPM provides
ore flexibility than birefringent phase matching since

he magnitude and direction of Kg may be engineered for
variety of applications.1 When a collinear geometry is

sed, k���, k�2��, and Kg are parallel vectors but QPM
as similar engineering advantages regarding noncol-

inear interactions.
The magnitudes of k��� and k�2�� change with fre-

uency because of dispersion in the refractive index of the
onlinear material; but in the presence of spectral angu-

ar dispersion, the directions of the FH and SH wave vec-
ors may also vary with frequency, and the angles � and �
re frequency dependent. If the angles � and � are appro-
riate functions of frequency, the spectral angular disper-
ion may offset the effects of material dispersion, broad-
ning the acceptance bandwidth of a nonlinear device.

The SHG interaction is quasi-phase matched when
k���=0 or the triangle formed by the vectors 2k���,
�2��, and Kg is closed. Using the law of cosines, we can
rite this condition as23

cos � = −
Kg

2 + 4�k����2 − �k�2���2

4Kgk���
, �1�

here k��� is the magnitude of k���, and similar notation
s used for the SH wave vector and the QPM grating wave
ector. Suppose the phase-matching condition in Eq. (1) is

ig. 1. Frequency-domain picture of plane-wave noncollinear
PM SHG. (a) QPM condition at frequency �. (b) QPM condition
t frequency �� (solid lines), where the dotted lines indicate the
PM condition at �. If �� and �� are chosen appropriately,
k���=�k���� and angular dispersion compensates material dis-
ersion to maintain a constant phase mismatch.
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et at the FH carrier frequency �1 with angles �0 and �0.
f we differentiate Eq. (1) with respect to frequency, then
e find that, to first order in �, the spectral angular dis-
ersion required to maintain QPM is

� ��

��
�

�1

=
��

k��1��0
, �2�

here �� is the group-velocity mismatch parameter de-
ned as

�� = � �k���

��
�

�1

− � �k���

��
�

�2

, �3�

here we assumed that �0	1 (an exact expression for all
ngles may be found in Ref. 23). A similar analysis gives
he resulting angular dispersion of the SH wave in this
ispersion-compensated geometry:

� �


��
�

�2

=
��

k�2�1��0
, �4�

here 
=�−�−� is the angle measured between vectors
�2�� and Kg.

. TIME-DOMAIN DESCRIPTION
n Section 2 we showed that for plane waves, QPM can be
aintained over a broad tuning range by introducing

pectral angular dispersion as the frequency of a FH
lane wave changes. Since an ultrashort pulse is a coher-
nt superposition of monochromatic plane waves with a
road optical spectrum, spectral angular dispersion can
lso broaden the bandwidth for the SHG of a short optical
ulse.
In the time domain, angular dispersion manifests itself

s a tilted pulse front.24 This situation is shown schemati-
ally in Fig. 2. Consider at time t=0, a FH field (solid out-
ine) at the origin in the x–z plane and propagating in the
direction. It generates some SH field (shaded gray) with
pproximately the same spatiotemporal envelope. After a
ime t, the FH field envelope has traveled a distance u1t
n the z direction, where u1 is the FH group velocity, and
i is defined as

1

ui
= � �k

��
�

�i

�5�

or the FH �i=1� and SH �i=2� fields. The SH field enve-
ope moves a distance u2t at a small angle �0 (determined
y the phase-matching condition) relative to the FH field
irection, with u2= ��k2 /��2�−1 equal to the SH group ve-
ocity. Taking the tilt angle of the pulse front to be �, then
he two fields have maximum overlap if �0 is chosen such
hat the position of the centroid of the SH field lies along
he tilted pulse front of the SH field. Since the pulse-front
ilt is related to the angular dispersion according to24
� = − arctan�k1u1� ��

��
�

�1

� , �6�

simple geometric analysis returns the same result as in
q. (2).

. EXPERIMENT
e demonstrate here type 0 quasi-phase-matched SHG

sing spectral angular dispersion to compensate for
roup-velocity mismatch (GVM). Figure 3(a) shows a
chematic diagram of the experimental setup. FH light is
ncident on a diffraction grating that imposes the requi-
ite spectral angular dispersion. The diffraction grating is
hen imaged into the center of a PPLN crystal so that the
ifferent frequency components of the FH field overlap in
pace inside the nonlinear crystal. The residual FH is
umped, and the SH is collected and reimaged onto a sec-
nd diffraction grating, which compensates the spectral
ngular dispersion of the SH light. Figure 3(b) shows a
ore detailed view of the SHG interaction, where the pol-

ng lines of the QPM grating and the noncollinear inter-
ction can be more clearly visualized.
Our experiment uses transform-limited FH pulses at

38 fs in a full width at half-maximum (FWHM) duration
t a wavelength of 1550 nm in a 1 cm long PPLN crystal,
ith 25 nm of FH bandwidth. At 1550 nm, the walk-off
arameter has a value of ��=−0.314 ps/mm, and the col-
inear SHG bandwidth of a 1 cm grating is 0.56 nm
FWHM) at the SH wavelength. The FH pulses are gen-
rated with a Spectra-Physics Opal synchronously
umped optical parametric oscillator operating at a wave-
ength of 1550 nm, pumped by a Spectra-Physics Tsunami

ode-locked Ti:sapphire laser. Pulses are 0.58 nJ in en-
rgy and are delivered at a repetition frequency of 82
Hz. The FH is dispersed using a diffraction grating with

00 lines/mm at an incident angle of 21 deg to give an an-
ular dispersion of 1.84 rad�m in free space. When the

ig. 2. Time-domain picture of tilted pulse-front group-velocity-
atched SHG. The solid outline indicates the FH envelope; the

ray shaded area indicates the SH envelope. With appropriately
hosen pulse-front tilt angle �, the field overlap is maintained
ith propagation and the group velocities are effectively
atched. The angle � is related to the spectral angular disper-

ion through Eq. (6).
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eam is imaged into the PPLN crystal with unit magnifi-
ation, the angular dispersion is 0.86 rad/�m inside the
rystal.

The PPLN crystal is 1 cm in length, with a poling pe-
iod of 9.256 �m, or 50% of the collinear phase-matching
eriod. The duty cycle was measured to be 25.5% (as com-
ared with the ideal 50%), resulting in an effective non-
inear coefficient2 of 12.15 pm/V. The vector phase-

atching condition requires an angle of 60.96 deg
etween the FH beam and the grating wave vector. The
oling lines of our PPLN device are at 60 deg relative to
he input facet, allowing near-normal incidence to the
PLN crystal. The phase-matching condition calls for an
ngle between FH and SH waves of 1.92 deg, which, ac-
ording to Eq. (34), matches the spectral angular disper-
ion required for group-velocity matching.

The diffraction grating is reimaged at the center of the
PLN crystal so that the spectral components of the FH
eam, although propagating at different angles, overlap
n space inside the nonlinear crystal. The beam is focused
lliptically using cylindrical lenses to achieve a spot
30 �m wide (1/e2 intensity full width) in the x (dis-
ersed) dimension and 180 �m in the y dimension. The
H is then collected, and the beam waist (located in the
enter of the PPLN crystal) is reimaged onto a diffraction
rating with 830 lines/mm at an incident angle of 76.6
eg where the spectral angular dispersion of the SH field
s compensated. When we use the simple imaging system
hown in Fig. 3, care must be taken to minimize spatial
hase distortions due to the imaging system,15 which can
esult in spatial chirp if the lenses are not sufficiently
laced in the far field. (We use lenses with a 15 cm long

ig. 3. Schematic diagram of the PPLN experiment with spec-
ral angular dispersion. (a) FH light incident on a diffraction
rating acquires spectral angular dispersion. A lens images this
pot into the PPLN crystal where SH light is generated. This SH
s then reimaged onto an output diffraction grating where the
pectral angular dispersion is undone. (b) A closeup view of the
HG interaction illustrating the noncollinear interaction in a
ilted QPM grating.
ocal length, placed 30 cm from the diffraction grating and
0 cm from the PPLN crystal.) Use of a telescope as de-
cribed by Martinez in Ref. 15 would eliminate the spatial
hase distortions present in a single-lens system.
The resulting SH is then analyzed using an autocorr-

lator and an optical spectrum analyzer. The measure-
ent results are displayed in Fig. 4. For comparison, we

lso show the measured spectrum and autocorrelation for
n identical-length crystal in a traditional collinear orien-
ation, in which the effects of GVM dominate the SHG
utput. The bandwidth in the noncollinear case is 8.3 nm
FWHM) and is more than 14 times the group-velocity-
imited bandwidth of the collinear interaction. Ignoring
ny bandwidth limitations from SHG, the expected SH
andwidth from FH pulses with a bandwidth of 25 nm is
alculated at 9.3 nm (assuming Gaussian FH pulses), and
ur experiment demonstrates 89% of this maximum
andwidth.
The output SH pulse is 170 fs (FWHM, calculated from

he autocorrelation assuming a Gaussian pulse shape) in
uration, approximately 1.5 times the transform limit in-
icating some residual spectral phase on the SH pulses.
iffraction gratings impose not only linear spectral angu-

ar dispersion, but higher-order angular dispersion as
ell onto the FH and SH fields. When the linear spectral
ngular dispersion is compensated, the higher-order dis-
ersion is not necessarily compensated simultaneously,
esulting in SH output with spatially varying frequency
hirp. (A discussion of the first-order angular dispersion
esulting from the reflection of a short optical pulse from
diffraction grating may be found in Ref. 24, Section 1.5,

nd a generalization to higher-order dispersion is
traightforward.) The magnitude of the higher-order spec-
ral angular dispersion can readily be calculated if the dif-
raction grating line spacing and the incident angles are
nown. For the experiment reported in Section 4, the qua-

ig. 4. Results of SHG with spectral angular dispersion in
PLN. Autocorrelation (left) and spectrum (right) of tilted pulse-

ront SHG (top) and collinear SHG in an identical length crystal
n the presence of group-velocity walk-off (bottom). With spectral
ngular dispersion, the measured autocorrelation has a FWHM
f 240 fs and a spectral FWHM of 8.3 nm, nearly 14 times
roader than the spectrum of collinear SHG in a crystal of iden-
ical length.
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ratic phase difference across the bandwidth of the SH
ulse evaluated at the beam waist is approximately equal
o � and is of the correct magnitude to approximately ac-
ount for the measured difference in pulse duration from
he ideal transform-limited case.

The measured conversion efficiency with a FH pulse
nergy of 0.58 nJ is 6.7% (SH energy of 38.7 pJ). The un-
epleted pump conversion efficiency for near-field Gauss-
an beams with FH pulse energy U1 and a nonlinear co-
fficient dm is given by2

� =
2�2�dm

2


0cn2n1
2�1

2

U1L2

wxwy�0
, �7�

here ni is the refractive index at the FH �i=1� and SH
i=2� wavelengths, �1 is the FH vacuum wavelength, and

is the interaction length. The FH field is assumed to be
Gaussian field in space and time, with a 1/e intensity

alf-width duration of �0 and a beam width equal to wx
nd wy (also 1/e intensity half-width) in the transverse x
nd y dimensions, respectively. If we compute the energy
onversion efficiency using the measured beam size of
x=187 �m (1/e2 full width of 530 �m) and wy=64 �m (
/e2 full width of 180 �m) and a pulse duration of 138 fs

�0=84 fs� in our experiment, we find that an estimate for
he normalized conversion efficiency is �0 /U1L2

108% / �nJ/cm2�; with a 1 cm crystal length and 0.58 nJ
f pump energy, this predicts conversion well into the
ump depletion regime.
It is clear that the simplified plane-wave analysis does

ot accurately predict the conversion efficiency of noncol-
inear SHG with angular dispersion; in Sections 5–10 we
resent a theory that more accurately predicts the conver-
ion efficiency. In addition, our model includes the effects
f GVD, diffraction, and spatial walk-off. The influence of
hese effects on noncollinear, group-velocity-matched
HG is discussed in detail.

. THEORETICAL MODEL
HG of a strongly tilted pulse in a noncollinear geometry
eparts from a plane-wave description in several ways.
erhaps the most obvious is the influence of spatial walk-
ff, where the generated SH field envelope walks off of the

ig. 5. Field envelope of a tilted pulse with (a) tilt angle � and
b) an untilted pulse. The width �x that determines the impor-
ance of diffraction may be much less than the beam width w0 for
tilted pulse. Such a tilted field will experience diffractive effects
ith a characteristic length LR� =k0�x2 rather than the diffraction

ength L =k w2 determined by the beam width w .
R 0 0 0
enerating FH beam because of the noncollinear nature of
he interaction. In a more subtle way, the pulse-front tilt
lso has a profound influence as a tilted pulse is affected
y diffraction more than an untilted pulse of the same
eam width.
As illustrated in Fig. 5, a field with beam width w0 and

emporal pulse width �0 subject to a large pulse tilt has a
ross section �x	w0. In Fig. 5 we show field envelopes for
tilted pulse with tilt angle � [Fig. 5(a)] and an untilted

ulse [Fig. 5(b)]. In both cases, the envelope propagates
ormal to the x axis. The diffraction length for a beam of
idth w0 is LR=kw0

2 where k=2�n /� is the magnitude of
he wave vector, given in terms of the refractive index n
nd the vacuum wavelength �. However, diffraction of a
ilted optical pulse has a characteristic length of LR�
k�x2	LR. Here we present a model that accounts for

his difference and examine its effects on the generation
f strongly tilted pulses.

To derive the equations that govern noncollinear SHG
ith spectral angular dispersion, we consider undepleted
ump SHG in a nonlinear, nonmagnetic dielectric with
ropagation direction z and variation in one transverse
imension x. The frequency-domain coupled scalar wave
quations are2

�2Ê1�z,x,��

�z2 +
�2Ê1�z,x,��

�x2 + k2���Ê1�z,x,�� = 0, �8�

�2Ê2�z,x,��

�z2 +
�2Ê2�z,x,��

�x2 + k2���Ê2�z,x,��

= − �0�2
2P̂NL�z,x,��, �9�

here k2���=�2
��� /c2 and P̂NL�z ,x ,�� is the nonlinear
olarization. Subscripts 1 and 2 refer to the FH and SH
eld, respectively. It is convenient to define an electric
eld envelope function Bi�z ,x , t�:

Ei�z,x,t� = E0Bi�z,x,t�exp�i�it − ikz,iz − ikx,ix�, �10�

here kz,i and kx,i are the z and x components, respec-
ively, of the wave vector k��i� evaluated at the carrier
requency �i. We explicitly factored out the FH field am-
litude E0, so that Bi�z ,x , t� is dimensionless and the FH
nvelope has unit amplitude. The magnitude of the wave
ector at the carrier frequency is ki and is related to the
omponents by ki

2=kz,i
2 +kx,i

2 . The corresponding
requency-domain electric field Êi�z ,x ,�� is related to the
ourier transform B̂i�z ,x ,�i� of this time-domain enve-

ope as

Êi�z,x,�� = E0B̂i�z,x,�i�exp�− ikz,iz − ikx,ix�, �11�

here �i=�−�i is the frequency detuning. To examine
he effect of dispersive terms, we expand k2��� in a Taylor
eries around the carrier frequency for the respective
elds:
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k2��� 	 ki
2 + 2ki

1

ui
�i +

1

ui
2�i

2 + ki�i�i
2, �12�

here ki is the magnitude of the wave vector at the car-
ier frequency �i , ui is the group velocity defined in Eq.
5), and �i is the GVD coefficient defined as

�i = � �2k

��2�
�i

. �13�

or periodic nonlinear media, we assume that the nonlin-
ar coefficient distribution d�z ,x� is dominated by a uni-
orm grating vector with z and x components designated
y Kg,z and Kg,x, respectively, and we find that the nonlin-
ar coefficient distribution is given by

d�z,x� 	 dm exp�iKg,zz + iKg,xx�, �14�

here dm is the Fourier component of a QPM grating of
rder m. The nonlinear polarization is defined as

PNL�z,x,t� = 
0d�z,x�E1
2�z,x,t�. �15�

ubstituting the above expansions and envelope defini-
ions into the coupled equations and Fourier transform-
ng, we find the time-domain form of the coupled envelope
quations including dispersive terms to second order. In
he following equations [Eqs. (16) and (17)], for simplicity
e drop the arguments from the field envelopes Bi
Bi�z ,x , t� and orient our coordinate system along the di-
ection of propagation of the FH wave, such that kx,1=0
nd kz,1=k1.

�2B1

�z2 − 2ik1

�B1

�z
+

�2B1

�x2 − 2i
k1

u1

�B1

�t
−

1

u1
2

�2B1

�t2 − k1�1

�2B1

�t2

= 0, �16�

�2B2

�z2 − 2ikz,2

�B2

�z
+

�2B2

�x2 − 2ikx,2

�B2

�x
− 2i

kz,2

u2

�B2

�t
−

1

u2
2

�2B2

�t2

− k2�2

�2B2

�t2 = −
4�1

2dmE0

c2 B1
2 exp�− i�kzz − i�kxx�.

�17�

he z component of the wave-vector mismatch �k=2k1
k2+Kg is defined as �kz=2k1−kz,2+Kg,z, and the x com-
onent is �kx=−kx,2+Kg,x. Hereafter we assume that the
nteraction is quasi-phase matched at the carrier frequen-
ies, i.e., �kz=0 and �kx=0.

It is convenient to change coordinate systems to a ref-
rence frame that moves along with the FH field at the
roup velocity u1. We define a new time coordinate T= t
z /u1, which is the time delay relative to the center of a

reely propagating field envelope at the FH group velocity.
he resulting coupled equations, in the limit of a slowly
arying field envelope, are

i
�B1

� z̄
−

1

2

L

LR,1

�2B1

� x̄2
+

L

LD,1

�2B1

�T̄2
= 0, �18�
�B2

� z̄
− i

L

Lg

�B2

�T̄
+ i

L

La

�B2

� x̄
−

1

2

L

LR,2

�2B2

� x̄2
+

L

LD,2

�2B2

�T̄2
− c2B1

2

= 0, �19�

here the coupling coefficient is

c2 =
2�dmE0L

n2�1
, �20�

nd the normalized coordinates z̄=z /L, x̄=x /w0, and T̄
T /�0 are defined relative to the interaction length L, the
haracteristic beam size w0, and the temporal pulsewidth
0. Note that both spatial and temporal walk-off terms ap-
ear only in the equation for the SH field, indicating that
ur chosen reference frame is along the direction of propa-
ation of the FH field �kx,1=0� and moves at the FH group
elocity.

The coupled equations are now clearly cast in terms of
haracteristic lengths: the aperture length

La =
w0

tan��0�
, �21�

here tan��0�=kx,2 /kz,2; the group-velocity walk-off
ength

Lg =
�0

��
; �22�

he Rayleigh length

LR,i = kiw0
2; �23�

nd the dispersion length

LD,i =
2�0

2

�i
. �24�

Equations (18) and (19) are normalized coupled equa-
ions for the SHG of short pulses in a noncollinear geom-
try, allowing for spatial walk-off, diffraction, temporal
alk-off, and GVD. To include the effects of spectral an-
ular dispersion, we define an angular dispersion param-
ter for the FH wave24 as

�1 =
k1w0

�0
� �����

��
�

�1

, �25�

hich is also related to the pulse-front tilt angle �
hrough

tan � = −
�0u1

w0
�1, �26�

ccording to Eq. (6).
A field envelope Bi�z̄ , x̄ , T̄� that acquires spectral angu-

ar dispersion �1 undergoes a transformation to a tilted
ulse-front envelope where the time delay of the field at
ransverse position x̄ is advanced or retarded by an
mount �1x̄, and the field transforms accordingly:

i�z̄ , x̄ , T̄�→Bi�z̄ , x̄ , T̄−�1x̄�.24

A strongly tilted �
�1
�1� field envelope diffracts quite
ifferently than an untilted field envelope, and, as illus-
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rated in Fig. 5, a tilted pulse may be influenced by dif-
raction even over distances much smaller than the Ray-
eigh length set by the beam width w0. A tilted field
nvelope in a Cartesian coordinate system can be repre-
ented by an untilted field in a tilted coordinate plane. We
how that this transformation introduces an angular dis-
ersion term into the coupled equations, which, while
hysically nonintuitive, allows a simple mathematical
reatment. The advantage of such a transformation be-
omes apparent as our intuition returns for effects such
s diffraction and dispersion. In this transformation, dif-
raction is separated into beam diffraction (determined by
he beam width w0) and diffraction due to pulse-front tilt
hat we treat as an effective GVD. In this formulation, we
eed only consider new effective GVD, group-velocity
alk-off, and diffraction coefficients.
A transformation of Eqs. (18) and (19) from coordinates

z̄ , x̄ , T̄� to the tilted coordinates �z̄ , x̄ , �̄= T̄−�1x̄� involves a
ransformation of the differential operators

�

� x̄
→

�

� x̄
− �1

�

� �̄
, �27�

�

�T̄
→

�

� �̄
, �28�

�2

� x̄2
→

�2

� x̄2
+ �1

2
�2

� �̄2
− 2�1

�2

� x̄ � �̄
, �29�

�2

�T̄2
→

�2

� �̄2
�30�

nd results in the coupled-wave equations

i
�B1

� z̄
−

1

2

L

LR,1

�2B1

� x̄2
+

L

LD,1�

�2B1

� �̄2
+ �1

L

LR,1

�2B1

� x̄ � �̄
= 0,

�31�

�B2

� z̄
− i� L

Lg
+ �1

L

La
� �B2

� �̄
+ i

L

La

�B2

� x̄
−

1

2

L

LR,2

�2B2

� x̄2

+
L

LD,2�

�2B2

� �̄2
+ �1

L

LR,2

�2B2

� x̄ � �̄
− c2B1

2 = 0. �32�

he time variable �̄ may be understood as the normalized
ime delay relative to the time delay of the envelope cen-
er ��1x̄� for each position x̄. The coefficients for the x̄ de-
ivatives do not change, but the coefficients for time de-
ivatives do change; and there appears a mixed angular
ispersion term with coefficients 2�1L /LR,i. The diffrac-
ion of tilted pulses in this transformation results in an
ffective dispersion length given by

1

LD,i�
=

1

LD,i
−

1

2

�1
2

LR,i
. �33�

he effective dispersion is a combination of GVD and ef-
ective temporal dispersion introduced by the diffraction
f a tilted pulse front. The diffraction of the tilted pulse
ront as shown in Fig. 5 is now separated from the diffrac-
ion of the beam and characterized as an effective GVD.
he field envelopes in Eqs. (31) and (32) are untilted since
e have instead tilted the coordinate system. Our intu-

tion again returns regarding diffraction and dispersion,
nd we can ignore the effects in Eqs. (31) and (32) term by
erm when the interaction length L is much less than the
orresponding characteristic length. We will show that
he added complication introduced by the mixed angular
ispersion term ��2 /�x̄� �̄� poses little difficulty in the
nalysis.
If we choose the pulse-front tilt so that �1=−La /Lg, the

VM term is eliminated from Eq. (32). Recalling the defi-
ition of �1 from Eq. (25), we find a simple relation be-
ween the spectral angular dispersion and the phase-
atching angle between the FH and SH waves:

� �����

��
�

�1

=
��

k1�0
, �34�

hich is identical to that given in Eq. (2). For the remain-
er of this paper, we assume that �1=−La /Lg and thus
hat the effects of GVM may be neglected.

For a particular QPM grating and choice of FH and SH
avelengths, the phase-matching angle �0 is fixed and,

hrough Eq. (34), so is the required spectral angular dis-
ersion. If the collinear limit is approached ��0→0�, we
nd that the spectral angular dispersion required for
roup-velocity matching becomes very large. Conversely,
f the untilted limit is approached ��� /��→0�, the phase-

atching angle required for group-velocity matching
ust also be very large, and the result will be that a large

eam or a short interaction length will be required to
void the effects of spatial walk-off.
To take advantage of a long interaction length, a small

hase-matching angle is typically desired, and �1 is large.
onsequently, the dispersive terms in Eqs. (31) and (32)
annot, in general, be ignored even if the crystal is shorter
han the material dispersion length, since an effective dis-
ersion arises that may be many times the magnitude of
he conventional GVD.

. GENERAL SOLUTIONS
n this section we solve Eqs. (31) and (32) in the limit of
n undepleted pump and ignoring beam diffraction. These
quations can be more easily solved in the temporal- and
patial-frequency domains, so we Fourier transform the
oupled equations using the transform pair

F�x,�� =
1

2�
�

−�

� �
−�

�

F̂��,��exp�i�� − i�x�d�d�, �35�

F̂��,�� =
1

2�
�

−�

� �
−�

�

F�x,��exp�− i�� + i�x�dxd�. �36�

he temporal- and spatial-frequency domain coupled
quations are

i
�B̂1

� z̄
−

L

LD,1�
�̄1

2B̂1 + �1

L

LR,1
�̄1�̄1B̂1 = 0, �37�
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i
�B̂2

� z̄
+

L

La
�̄2B̂2 −

L

LD,2�
�̄2

2B̂2 + �1

L

LR,2
�̄2�̄2B̂2 = c2F̂2�z, �̄2,�̄2�,

�38�

here �̄i=�0��−�i� is the normalized frequency detuning
nd �̄i=w0�kx−kx,i� is the normalized spatial-frequency
etuning. The transform of the square of the FH field en-
elope is written as the self-convolution of the transform
f the FH envelope:

F̂2�z̄, �̄2,�̄2� =
1

2�
�

−�

� �
−�

�

B̂1�z̄, �̄�,�̄��B̂1�z̄, �̄2 − �̄�,�̄2

− �̄��d�̄�d�̄�. �39�

he solution to Eq. (37) is

B̂1�z̄, �̄1,�̄1� = B̂0��̄1,�̄1�exp�− i� L

LD,1�
�̄1

2 − �1

L

LR,1
�̄1�̄1�z̄
 ,

�40�

here B̂0��̄1 ,�̄1� is the input FH field envelope, defined at
=0. We define the input FH envelope at z̄=0 in the cen-
er of the crystal, instead of at the incident face �z̄=
1/2� since the former is typically the location where the
ispersed field is reimaged from the diffraction grating
nd where the effective GVD due to pulse-front dispersion
s arranged to vanish. Of course, the total effective GVD is
nly zero at this point if material GVD may be ignored; so
n the case where material GVD is nonnegligible, one

ust take care to include the material GVD from the first
alf of the nonlinear crystal into this definition of the field
nvelope.

According to Eq. (40), the spectral amplitude of the FH
eld does not change, consistent with the assumption of
n undepleted pump, but it acquires a spectral phase re-
ulting from effective dispersion and spectral angular dis-
ersion. To obtain the solution for the SH, it is convenient
o define

Ĝ2�z̄, �̄2,�̄2� = B̂2�z̄, �̄2,�̄2�

�exp�− i� L

La
�̄2 −

L

LD,2�
�̄2

2 + �1

L

LR,2
�̄2�̄2�z̄
 .

�41�

he field Ĝ2 has the same spectral amplitude as B̂2, but
xplicitly factors out the spectral phase of a freely propa-
ating SH field so that we can more clearly see the effects
f frequency conversion.

We find on substitution of the definition in Eq. (41) into
q. (38) that the solution for the field Ĝ2�z̄ , �̄2 ,�̄2� is

Ĝ2�z̄, �̄2,�̄2� =�
−1/2

1/2

− ic2F̂2�z, �̄2,�̄2�

�exp�− i� L

La
�̄2 −

L

LD,2�
�̄2

2

+ �1

L
�̄2�̄2�z̄
dz̄. �42�
LR,2
he limits of integration indicate that the interaction oc-
urs over −L /2�z�L /2. Equation (42), along with the
efinitions in Eqs. (39) and (41) and the FH solution in
q. (40), represents the solution for broadband SHG of a

ilted FH field with angular dispersion characterized by
1.

. SOLUTION FOR A GAUSSIAN FIRST-
ARMONIC FIELD ENVELOPE
quation (42) is a general solution for tilted pulse SHG,
ut in its current form is not particularly instructive. We
an evaluate this expression in the particular case of a
aussian FH input field; the resulting SH field expres-

ion will give insight into the behavior of a tilted pulse-
ront SHG. We define an initial FH field envelope

B0�x̄, �̄� = exp�−
x̄2

2
−

�̄2

2
� , �43�

here the characteristic beam size w0 and pulse width �0
re defined as 1/e intensity half-widths of the field enve-
ope B0�x ,��. Using the transform pair in Eqs. (35) and
36), the frequency and spatial-frequency domain FH field
nvelope is

B̂0��̄1,�̄1� = exp�−
�̄1

2

2
−

�̄1
2

2
� . �44�

ubstituting this Gaussian field into Eq. (40) we can com-
ute F̂2�z , �̄2 ,�̄2� using Eq. (39) to find

F̂2�z̄, �̄2,�̄2� =
1

2�1 + 2i
L

LD,1�
z̄ + �1

2� L

LR,1
�2

z̄2
1/2

�exp�−
�̄2

2

4 �1 + 2i
L

LD,1�
z̄� −

�̄2
2

4

+ i�1

L

LR,1

�̄2�̄2z̄

2

 . �45�

ubstituting Eq. (45) into Eq. (42), we find an expression
or the output field envelope Ĝ2, related to B̂2 through Eq.
41):

Ĝ2�z̄ = 1/2, �̄2,�̄2� =
− ic2

2
exp�−

�̄2
2

4
−

�̄2
2

4
�I2�q�, �46�

here

I2�q� =�
−1/2

1/2 exp�iqz�

�1 + 2i
L

LD,1�
z + �1

2� L

LR,1
�2

z2
1/2dz, �47�

q = �1�R�̄2�̄2 + �D�̄2
2 − A�̄2. �48�

he first term in the expression for q represents mis-
atch in the spectral angular dispersion between FH and
H fields, where we define
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�R =
1

2

L

LR,1
−

L

LR,2
=

L

w0
2k1k2

�k2 − 2k1�. �49�

lthough we have assumed that the FH and SH angular
ispersion is equal to that required to maintain phase
atching across the bandwidth of our short pulse, accord-

ng to the conditions given in Eqs. (2) and (4), dispersion
n the refractive index causes these two waves to disperse
ifferently as their frequency components separate in
pace. The first term in q reflects the mismatch in angu-
ar dispersion and is equal to zero if there is no angular
ispersion �1=0 or if there is no difference in the refrac-
ive index at the FH and SH waves n1−n2=0.

The second term represents mismatch in effective
VD:

�D = � L

LD,2�
−

1

2

L

LD,1�
� =

L

2�0
2��2 −

�1

2
� +

�1
2L

2w0
2k1k2

�2k1 − k2�.

�50�

he first part is the mismatch in material GVD, and the
econd part represents the mismatch in effective GVD
hat arises from the diffraction of a strongly tilted pulse.
epending on the geometry, the total effective GVD may
e dominated by either effect, but we note that the effec-
ive dispersion term is of the order of �1 larger than the
ngular dispersion effect in Eq. (49), so the angular dis-
ersion mismatch may be ignored in the limit 
�1
�1. The
hird term in q represents the effects of spatial walk-off
ith the parameter A defined as the ratio

A =
L

La
. �51�

he behavior of SHG in the presence of spectral angular
ispersion depends centrally on the evaluation of I2�q�,
hich represents the influence of spatial walk-off and
VD and can affect both the amplitude and the shape of

he SH envelope. The parameter q includes all frequency
nd spatial-frequency dependence and groups together
he effects of angular dispersion mismatch, effective GVD
ismatch, and spatial walk-off. To determine the magni-

ude of these effects, we need only to examine each of the
erms in the expression for q and evaluate the depen-
ence of I2�q� on q.
We can evaluate I2�q� in some practical limits that sim-

lify the mathematics but still reveal clearly the essential
hysics. The first approximation is to assume strong spec-
ral angular dispersion, or 
�1
�1. In addition, we assume
hat �1

2�2LR /LD, or equivalently, that the effective GVD
s dominated by diffractive effects instead of material
VD and, according to Eq. (33), LD,1� 	−2LR,1 /�1

2. With
hese simplifications,

I2�q� =�
−1/2

1/2 exp�iqz�

�1 − 2iDz�1/2dz, �52�

here we defined the ratio D=−L /LD,1� 	�1
2L /2LR,1 to

implify the notation. Since q is a function of �̄ and
, I2�q=0� represents the value at �̄=0 and �̄=0, or the
idband amplitude reduction. At the midband, the inte-
ral can be readily evaluated, and we define this midband
mplitude as I0�D�:

I0�D� = I2�q = 0� = 2I� 1

D
�1 − iD�1/2
 , �53�

here I�x� denotes the imaginary part of x. This function
s plotted in Fig. 6. When D	1, I0	1 and the midband
H amplitude is not influenced by the effective GVD. If
�1, I0	�2/D�1/2 and the midband SH amplitude de-

reases with an increasing ratio of 
L /LD,1� 
.
In the general case the integral in Eq. (52) cannot be

xpressed in terms of elementary functions, but may be
xpressed in terms of the complex error function defined
s

erf�z� =
2

��
�

0

z

exp�− u2�du, �54�

nd I2�q� is given by

I2�q� = sgn�q�exp� q

2D
�I�� 2�

qD
�1/2

erf�q

2
� 1

D
− i�
1/2� ,

�55�

here sgn�q�=q / 
q
.
In Fig. 7 we show a few cases of I2�q� for different val-

es of D, including the limiting cases of D�1 and D	1.
When D	1,

I2�q� 	 sinc�q/2�, �56�

here sinc�x�=sin�x� /x. When D�1, I2�q� has the ap-
roximate solution

I2�q� = sgn�q�� 2

D
�1/2

I���

q
�1/2

erf�− iq

2
�1/2
 . �57�

n this limit, only the amplitude and not the shape of I2�q�
s influenced by the value of D.

ig. 6. SH amplitude reduction I0�D�. The solid curve is I0�D�,
nd the dashed–dotted lines indicate asymptotic behavior for D
1 where I �D�	1 and D�1 where I �D�	�2/D.
0 0
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. EFFECTS OF GROUP-VELOCITY
ISPERSION AND SPATIAL WALK-OFF
patial walk-off and GVD are important effects influenc-

ng the behavior of SHG. In their absence, I2�q�=1 and
he solution for tilted pulse-front SHG in Eq. (46) is
rivial. The magnitudes of these effects are set by the
agnitudes of the constants in Eqs. (49) through (51).
hese constants depend not only on material parameters,
ut on experimental conditions (i.e., interaction length,
eam waist, pulse-front tilt) as well.
To understand the effect of spatial walk-off and GVD on

onversion efficiency, bandwidth, and beam shape, we in-
estigate the influence of these effects on the solution in
q. (46). All frequency and spatial-frequency behavior is
ontained in I2�q�, since q is a function of �̄ and �̄.

The effect of GVD manifests itself in two forms. First,
hen the magnitude of dispersion at the fundamental fre-
uency is large, the peak intensity decreases with propa-
ation distance, reducing the effective interaction length.
he magnitude of the FH dispersion appears in the ratio
and consequently affects the midband SH amplitude re-

uction in Eq. (53). This reduced efficiency is the result of
reduced peak FH intensity in the presence of dispersion.
ince the magnitude of D does not directly affect the
hape of I2�q�, the frequency content of the SH field is not
ffected by the magnitude of the effective dispersion rep-
esented by D.

Although the magnitude of GVD does not directly affect
he bandwidth of SHG, the mismatch between the effec-
ive dispersion of FH and SH fields (represented by the
oefficient �D) may influence the SH frequency content.
hen the effective GVD of the FH polarization and the

H field are mismatched, the result is a phase mismatch
hat can accumulate across the bandwidth of a short op-
ical pulse, limiting the bandwidth of the SHG interac-
ion. If the largest term in q is the GVD term in Eq. (48),
hen q	�D�̄2 where �D is the effective GVD mismatch,
efined in Eq. (50). The frequency-domain field envelope

ˆ
2 is the product of I2 and the transform of the square of

he envelope of the FH field, as in Eq. (41). In Fig. 8 we

ig. 7. Evaluation of the response function I2�q� for several val-
es of D, normalized to the value at q=0. When D	1,I2�q�
sinc�q /2�. When D�1,I2�q� is asymmetric with a slowly decay-

ng tail.
how the bandwidth reduction versus �D for several val-
es of D. With negligible dispersion mismatch �
�D
	1�,
he expected bandwidth is �2 times larger than the input
H bandwidth. The bandwidth decreases approximately
s 
�D
−1/2 for 
�D
�1. To preserve the bandwidth of the
HG interaction, we should choose the interaction length,
ulse-front tilt, and beam size such that 
�D
	1.
Note that when D�1, the bandwidth is asymmetric in

D and even exhibits a larger bandwidth than the �D=0
ase. This is due to the asymmetry in I2�q� for D�1
hown in Fig. 7. Since q is quadratic in �̄, and the enve-
ope of I2�q� is not symmetric in q, the behavior can be
uite different for different signs of �D.
When q [see Eq. (48)] is dominated by the spatial walk-

ff term, q	−A�̄2, where A=L /La. In this limit, I2 is in-
ependent of �̄; and even in the limit of large spatial
alk-off, the frequency content of the electric field is un-
ltered. Walk-off will, however, limit the spatial-
requency content for large values of 
A
 and accordingly
ffects the size and shape of the SH beam. Although neg-
igible dispersion mismatch �
�D
�1� is a necessary condi-
ion for preserving the bandwidth of SHG, spatial walk-
ff does not affect the frequency bandwidth. In Fig. 9 we
how the effects of varying spatial walk-off on the output
eam size and shape for different values of the effective
ispersion characterized by D. In all cases, as A increases,
he beam size increases when I2�q=−A�̄2� becomes nar-
ower than the field envelope, or when 
A
	1 and the field
nvelope is influenced by the shape of I2�q=−A�̄2�. Al-
hough when D	1 the resulting beam profile for 
A
�1
ould be a top hat [i.e., with a Fourier transform propor-

ional to I2�q�=sinc�q /2�, at larger values of D we can see
his is not true. In Section 10 we discuss how the beam
ize and quality trade off against conversion efficiency.

In this section we have considered separately the influ-
nce of spatial walk-off and GVD mismatch. When one ef-
ect is clearly dominant it influences separately the fre-
uency and spatial-frequency content of the SH envelope,
.e., spatial walk-off does not influence the frequency con-

ig. 8. SHG acceptance bandwidth versus effective GVD mis-
atch parameter �D defined in Eq. (50) for several values of the
H effective dispersion parameter D. Here we neglect spatial
alk-off and assume that q	�D�2

2. Minimal loss of bandwidth
esults when 
� 
�1 regardless of the magnitude of D.
D
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ent of the SH envelope, and GVD mismatch does not af-
ect the SH spatial envelope. In general, however, q con-
ains terms influenced by both spatial walk-off and GVD
ismatch as shown in Eq. (48). If both L /La and �D are of

omparable magnitude, they must be considered together
n the evaluation of I2�q�. Consequently the frequency and
patial-frequency behavior may not be separately attrib-
ted to the magnitude of GVD mismatch and spatial
alk-off, respectively.
For the remainder of this paper, we assume that 
�D

1 so as to preserve the bandwidth of SHG, and the ef-

ects of GVD mismatch are neglected.

. CONVERSION EFFICIENCY IN THE
BSENCE OF SPATIAL WALK-OFF AND
ROUP VELOCITY DISPERSION
ith the field solution of Eq. (46), we can compute the en-

rgy conversion efficiency for tilted pulse-front SHG as
he ratio of SH energy to FH energy:

� =
U2

U1
=

n2

n1

�
−�

� �
−�

�


B̂2�z̄ = 1/2, �̄,�̄�
2d�̄d�̄

�
−�

� �
−�

�


B̂0��̄,�̄�
2d�̄d�̄

. �58�

e evaluate the conversion efficiency using the definition
f Ĝ in Eq. (46), its relation to B̂ in Eq. (41), and the FH

ig. 9. Effects of spatial walk-off on beam profile for several val-
es of the spatial walk-off parameter A=L /La. On the left is plot-
ed the near-field SH amplitude versus x, and on the right the
eld amplitude versus spatial frequency (proportional to the far-
eld SH amplitude distribution after angular dispersion has
een compensated) is shown. The shape of the response function
2�q� is influenced by the dispersion parameter D, while increas-
ng A changes the scaling of the width of the response function in
he spatial-frequency domain since q=A�. When A	1, the re-
ponse function is much wider than the polarization distribution,
nd both the near-field and far-field distributions are Gaussian
or all values of D. When A�1, the response function is narrower
han the polarization distribution, and the SH amplitude is in-
uenced by the shape of I2�q�. When D	1 (top graphs), I2�q�
sinc�q� and the near-field distribution approaches a flat-top

unction. For larger D (middle and bottom graphs), I2�q� departs
rom the sinc�q� behavior as shown in Fig. 7, and the near-field
nd far-field distributions reflect the distortion of the response
unction when A�1.
2 2
eld used in this Gaussian example from Eq. (44). In the
imit of negligible effective GVD and angular dispersion,
2	1. If we write c2 [defined in Eq. (20)] in terms of the
H pulse energy,

c2
2 =

8�dm
2


0cn2
2n1�1

2

U1L2

w0�y�0
, �59�

here �y is the effective cross section of the FH beam in
he transverse y dimension (equal to ��wy for a Gaussian
eld). The conversion efficiency is

�0 =
n2

n1

c2
2

2
=

4�dm
2


0cn2n1
2�1

2

U1L2

w0�y�0
. �60�

he conversion efficiency is equal to the well-known re-
ult for an untilted Gaussian FH pulse in the absence of
VM, GVD, diffraction, and spatial walk-off.2 The peak
ower conversion efficiency is n2c2

2 /n1, and an additional
actor of 1/2 results from our averaging this peak power
fficiency over Gaussian envelopes in the transverse x di-
ension and in time. Our theoretical model ignores varia-

ions in the field envelope in the transverse y dimension
nd consequently assumes an equal effective area of the
H and SH envelopes in this dimension. However, consid-
ring a Gaussian envelope in y simply involves substitut-
ng the FH effective area �y=��wy and further reducing
he expression in Eq. (60) by a factor of 1/�2 due to the
veraging of conversion efficiency over a Gaussian enve-
ope in the y dimension. With such a substitution, Eq. (60)
s equivalent to the plane-wave estimate in Eq. (7).

In the presence of GVM, if we choose our interaction
ength L=2Lg to preserve the pulse width,2 the conver-
ion efficiency for an untilted Gaussian FH beam limited
y GVM is

�GVM =
38.3dm

2


0cn2n1
2�1

2

U1Lg
2

w0�y�0
= 3.05

Lg
2

L2�0, �61�

nd we find that using spectral angular dispersion gives
n advantage of 0.33L2 /Lg

2 in conversion efficiency over
sing a collinear geometry and a bandwidth-limited crys-
al length equal to 2Lg. Using a chirped grating with an
ptimum grating chirp �Dg=3�� /�0L� and an unchirped
H pulse, we obtain a conversion efficiency of2

�CG = 1.37
L

Lg
�GVM = 4.18

Lg

L
�0, �62�

nd the efficiency for the spectral angular dispersion tech-
ique is greater by a factor of 0.24L /Lg than when we use
chirped QPM grating.

0. CONVERSION EFFICIENCY IN THE
RESENCE OF SPATIAL WALK-OFF AND
ROUP-VELOCITY DISPERSION:
PTIMIZING THE FOCUSING CONDITIONS
ND PHASE-MATCHING ANGLE
lthough it is always possible through appropriate choice
f the phase-matching angle and the beam size to design
n experiment with negligible effective GVD and spatial
alk-off, it is not true that those conditions result in the
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eak conversion efficiency. Here we assume that the GVD
ismatch parameter �D	1, so that q=−A�̄2 with A
L /La.
In designing an experiment we are free to choose the

ocusing conditions, and (in the absence of optical dam-
ge) there exists an optimum focusing condition for peak
onversion efficiency. Boyd and Kleinman showed that,
or cw interactions in the absence of spatial walk-off,
here exists an optimum focusing condition approximated
losely by confocal focusing, i.e., for a diffraction length
qual to half of the crystal length.25 The nature of this op-
imum condition involves a trade-off between high peak
ntensity and an effective interaction length that may be
ess than L for tightly focused beams. For beams with
aists larger than the confocal waist, decreasing the
aist results in an increased intensity that is approxi-
ately constant over the interaction length, and the re-

ult is higher conversion efficiency. For beams smaller
han the confocal waist, however, the effective interaction
ength is reduced below the crystal length L and the con-
ersion efficiency decreases with tighter focusing. An
nalagous qualitative argument may be made regarding
he effective dispersion that exists in tilted pulse-front
HG, and below we will show that the maximum conver-
ion efficiency is achieved when the interaction length is
qual to 1.73 times the effective dispersion length. This
esult is analagous to the focusing condition for the best
HG conversion set forth in Ref. 25, where the interaction

ength is 2.84 times the FH confocal length. (This condi-
ion is often approximated by an interaction length equal
o the confocal length, where the efficiency is 80% of the
axiumum but with a reduced peak intensity.)
In addition to a choice of focusing conditions, QPM af-

ords us a choice of phase-matching angles if we can con-
truct a QPM grating to phase match a variety of noncol-
inear interactions. Decreasing the phase-matching angle
educes spatial walk-off but also decreases the effective
ispersion length (at a fixed spot size). Maximizing the
onversion efficiency involves choosing properly both the
ocusing conditions and the phase-matching angle.

With a given nonlinear material at a fixed FH wave-
ength, the effective dispersion length LD,1� and the aper-
ure length La are uniquely determined by the FH spot
ize w0 and the phase-matching angle �0. Here we discuss
hat choice of La and LD,1� , or equivalently w0 and �0,

eads to the maximum conversion efficiency of a particu-
ar interaction at a fixed interaction length.

Including the effects of spatial walk-off and effective
ispersion,

� = �0h�D,A�, �63�

here �0 is the conversion efficiency with negligible GVD
nd spatial walk-off, given in Eq. (60), and we define the
fficiency reduction factor h as

h�D,A� =
1

2�
�

−�

�


I2�q�
2exp�−
�̄2

2

2
−

�̄2
2

2
�d�̄2d�̄2. �64�

e recall the definition of parameters A=L /La and D=
L /LD,1� representing the influence of spatial walk-off and
ffective dispersion, respectively. The efficiency reduction
actor is plotted in Fig. 10 for several values of D. When
A
	1,h is simply the square of the amplitude reduction
iven in Eq. (53).

The efficiency reduction factor h is a function of D and
and is consequently also a function of both w0 and �0.

he coupling coefficient c2 also changes with the input
eam size, so maximizing the efficiency involves a balance
etween maximizing the reduction factor h and maximiz-
ng the coupling coefficient c2.

We recall the definitions of the characteristic lengths
a and LD,1� and rewrite c2

2 from Eq. (59) as

c2
2 =

16�3/2dm
2 Lg


0cn2
2n1

1/2�1
5/2

U1L1/2

�y�0

L

La
� L

LD,1�
�1/2

. �65�

pon substitution into Eq. (63), we find that the conver-
ion efficiency is equal to

� =
8�3/2dm

2 Lg


0cn2n1
3/2�1

5/2

U1L1/2

�y�0
A�Dh�A,D�. �66�

ig. 10. (a) Surface plot of the efficiency reduction factor h�A ,D�
s a function of A=L /La and D=L /LD,1� . When both spatial walk-
ff and effective dispersion are ignored (A	1 and D	1),
�A ,D�	1. Increased effective dispersion �D�1� leads to pulse
preading, and the length over which the intensity is at its maxi-
um is reduced, resulting in a decreased conversion efficiency.

ncreased spatial walk-off �A�1� results in a generated SH field
hat propagates away from the peak FH intensity also resulting
n a reduced effective interaction length and decreasing conver-
ion efficiency. (b) Plot of h�A ,D� at fixed selected values of D. For
	1,h�A ,D�	
I0
2 as given in Eq. (53) determined only by the

ffective dispersion parameter D.
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At a fixed interaction length, variations in beam size w0
nd phase-matching angle �0 change only A and D, so
hat finding the maximum in A�Dh�A ,D� will return the
ocusing and phase-matching conditions for peak conver-
ion efficiency. A global optimization of the conversion ef-
ciency predicts that the conversion efficiency saturates
o its maximum value when A tends to infinity, i.e., the
imit of large spatial walk-off corresponding to very tight
ocusing or a large phase-matching angle. Practically
peaking, however, this results in an output SH envelope
ith a spatial-frequency distribution that is narrow (i.e.,
wider SH beam) and resembles the function I2�q� shown

n Fig. 7. The resulting beam profile may be a top hat
hen D	1 and I2�q�	sinc�q /2� or may have a spatial-

requency distribution with a slowly decaying asymmetric
ail when D�1.

Let us examine more closely the trade-off between
eam quality and the conversion efficiency. When A
1, h=h0= 
I0�D�
2 and is independent of A. In Fig. 11 we

lot �D
I0�D�
2, and it demonstrates a peak at Dmax
1.73. This value of D maximizes the mid-spatial-

requency conversion efficiency. At larger values of D, the
ffective dispersion length is shorter than the interaction
ength, resulting in a decreased peak intensity over a sig-
ificant portion of the interaction length. This decreased
eak intensity is the source of the decreasing conversion
fficiency when D�1. For large pulse-front tilt 
�1
�1, we
ote that D=1.73 implies L /LR,1	1, and the entire inter-
ction takes place in the near field of the FH beam.
In the limits when D	1 and D�1, Eqs. (56) and (57)

emonstrate that the value of D affects the amplitude of
2�q�, but not the functional form. Indeed, even when D
1, the shape of I2�q� changes very slowly with different

alues of D (see Fig. 7), and one might expect that the op-
imum value of D will be near its value when A	1 for
arger values of A. This assertion can be verified numeri-
ally; the optimum value for D is nearly independent of
he choice of A. (For an absolute optimization of conver-
ion efficiency, both D and A tend to infinity, but as we
ill show, a large A results in significant beam distor-

ig. 11. Normalized SH amplitude is proportional to the func-
ion �D
I0�D�
2 and demonstrates a peak at D=1.73. The dashed–
otted lines indicate asymptotic behavior for D	1 where I0�D�
1 and D�1 where I0�D�	�2/D.
ions. If reasonably good beam quality is desired, the op-
imum value for D can be treated independently of the
hoice of A.)

With an optimum value for D, we examine how the SH
onversion changes by changing A with fixed D. With D
xed, the phase-matching angle is fixed, and changing A
L /La=L�0 /w0 may be accomplished by changing the
eam waist w0. As A increases, the amplitude of the SH
eld increases as a result of the increased intensity re-
ulting from a smaller beam waist, but the spatial-
requency bandwidth narrows as I2�q� becomes narrower
han the Gaussian polarization envelope in Eq. (46). As a
esult, the SH beam broadens, and its shape is influenced
y the shape of I2�q� as shown in Fig. 9. If 
A
	1, I2�q=
A�̄2� is approximately constant over the spatial-

requency envelope of Ĝ2, and the SH beam is Gaussian,
ith a beam quality parameter26 M2=1 and a beam size

hat is �2 times smaller than the FH pump beam.
Figure 12 quantifies the trade-offs between conversion

fficiency and beam size and quality. Conversion effi-
iency, beam size, and beam quality are plotted as D is
eld fixed at its optimum value of Dmax=1.73. When A
3, the conversion efficiency is at 71% of its maximum
alue. The SH beam with A=3 has a waist that is ap-
roximately �2 times larger than the A	1 value, or
oughly equal to the FH beam size w0 and has M2=1.10.
The beam quality parameter M2=1 for a perfect Gauss-
an TEM00 mode and increases with increasing higher-
rder mode content. For a more complete discussion on
he concept and measurement of M2, see Ref. 26.) With
=3 and D=1.73, h�A ,D�=0.45 and the conversion effi-

iency in Eq. (66) is

ig. 12. Trade-off of normalized conversion efficiency (top) and
eam size and quality (bottom) with optimum dispersion param-
ter D=1.73 in the presence of spatial walk-off. At a fixed value
f D, the spatial walk-off parameter A=L /La is increased by de-
reasing the beam size w0. The increased intensity results in
igher conversion efficiency, but the resulting increase in spatial
alk-off causes an increase in SH beam size and poor SH spatial
ode quality. A compromise may be reached for A	3, where the

onversion efficiency reaches 71% of its maximum value, but the
eam is approximately equal to the FH beam size with a beam
uality parameter M2=1.10 (M2=1 implies a Gaussian TEM00
ode).
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� =
79dm

2


0cn2n1
3/2�1

5/2��

U1L1/2

�y
. �67�

f we further presume that the beam is confocally focused
n the transverse y (nondispersed) dimension for maxi-

um conversion efficiency,25 then �y= �L�1 /3.2n1�1/2, and
he optimized conversion efficiency is

�opt =
141.4dm

2


0c��n2n1�1
3U1. �68�

e can compare this result with the conversion efficiency
or collinear SHG in a uniform crystal with a bandwidth-
imited length of L=2Lg and confocal focusing,2

�GVM
conf =

76.7dm
2


0c��n1n2�1
3U1, �69�

nd with the conversion efficiency for collinear SHG in a
hirped QPM grating with confocal focusing,2

�CG
conf = 1.39�GVM

conf =
106.6dm

2


0c��n1n2�1
3U1, �70�

nd we find that the scaling of the conversion efficiency
or all three cases is identical. The difference in the mag-
itude of the conversion efficiency lies primarily in select-

ng the best conditions, since all three techniques require
ome subjective choice regarding a trade-off. Noncollinear
HG with spectral angular dispersion trades off beam
uality with conversion efficiency, whereas the other two
rade off bandwidth and conversion efficiency. In all three
ases, a slightly higher conversion efficiency may be ob-
ained at an expense of either decreased SH bandwidth or
educed SH beam quality.

Since all three techniques under optimum focusing con-
itions yield approximately identical values for energy
onversion efficiency, other considerations may influence
he experimenter’s choice regarding the best method in a
articular application. For example, using a short QPM
rating is significantly simplier than using chirped grat-
ngs or spectral angular dispersion, as no dispersive ele-

ents are required. Dispersive elements are required
hen either a chirped QPM grating (a grating pair or dis-
ersive material is required to compress the chirped SH
utput) or spectral angular dispersion is used (a grating
r prism is required at the input to impose angular dis-
ersion on the FH and at the output to compensate the
ngular dispersion of the generated SH field). Additional
ispersive elements add both complexity and loss. How-
ver, since a short QPM grating is much shorter than the
rystal length that may be used for the other two tech-
iques, the required focusing for best conversion requires
much smaller spot size and results in a correspondingly
igh peak intensity. If this intensity exceeds the damage

ntensity, or leads to increased two-photon absorption, ei-
her of the other two techniques allows for the same con-
ersion efficiency at much larger spot sizes. In the tilted
ulse-front case, the optimum is reached when the beam
ize is larger than confocal and so offers a lower peak in-
ensity for the same conversion as a chirped grating of
quivalent crystal length. The peak FH intensity in non-
ollinear SHG with spectral angular dispersion under the
ptimum focusing conditions discussed above is a factor of
�Lg /L�2 lower than the peak intensity for a short crystal
f length 2Lg under confocal focusing conditions and is a
actor of 4Lg /L lower than for confocal focusing into a
hirped QPM crystal of equivalent length L.

If we now return to the experiment in Section 4, we can
nclude the effective dispersion and spatial walk-off
hrough the efficiency reduction factor h�A ,D� in Eq. (63).
ith a beam size w0=180 �m and a phase-matching

ngle of �0=1.92 deg, the aperture length is 5.6 mm, mak-
ng A=L /La=1.8 for a crystal length of 1 cm. The group-
elocity walk-off length Lg is equal to 260 �m for our 138
s pulses ��0=84 fs�, so that the pulse-front tilt parameter
�1
=La /Lg=21 and the effective dispersion length is
LD,1� 
=1.4 mm with D=7.1. The GVD mismatch param-
ter �D=0.31, so we expect negligible loss of bandwidth.
he corresponding efficiency reduction factor h�A ,D� is
1%, making the calculated conversion efficiency 14.7%,
hich is in reasonable agreement with the observed 6.7%.
e note that these values of A and D are not the optimum

alues computed in our theoretical calculation, and ac-
ordingly with our 1 cm length crystal we could achieve a
igher conversion efficiency by decreasing both the phase-
atching angle and the beam size until A	3 and D
1.73, i.e., for �0=1.56 deg and w0=91 �m. With confocal

ocusing in the nondispersed dimension, the peak conver-
ion efficiency calculated with Eq. (68) is 143% /nJ, or
ell into pump depletion with our FH pulse energy of 0.58
J.

1. CONCLUSION
e demonstrate frequency doubling of ultrashort pulses

sing spectral angular dispersion and a noncollinear ge-
metry to eliminate the effects of GVM. Our experiment
emonstrates SHG of pulses 138 fs in duration at a FH
avelength of 1550 nm in a PPLN crystal many times

onger than the group-velocity walk-off length with negli-
ible loss of SHG bandwidth.

In addition, we develop a theoretical model for group-
elocity-matched SHG in quasi-phase-matched materials
hat includes the effects of dispersion, diffraction, and
patial walk-off. The diffraction of a strongly tilted pulse
s treated as an effective dispersion, and a solution for the
utput SH field envelope is presented for the case of a
aussian FH pump pulse. The diffraction of a strongly

ilted pulse envelope is separated into the diffraction of
he beam and an effective dispersion that results from the
ulse-front tilt. The SH bandwidth may be limited by mis-
atch in the GVD or in the effective dispersion resulting

rom the diffraction of a tilted pulse. This total effective
ispersion mismatch is characterized by a dispersion mis-
atch parameter �D, which should be less than unity to

reserve the bandwidth of SHG. If �D	1, spatial walk-off
nd dispersion do not affect the frequency content of SHG
nd affect only the amplitude or beam shape.
The effective dispersion resulting from a tilted pulse

ront, combined with the effects of spatial walk-off, re-
ults in a reduced conversion efficiency characterized by
n efficiency reduction factor. The efficiency reduction fac-
or affects the optimum focusing condition and phase-
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atching angle for peak conversion efficiency. This opti-
um is found where the phase-matching angle, inversely

roportional to the pulse-front tilt, is chosen such that the
ffective dispersion resulting from the diffraction of a
itled pulse has a characteristic length equal to 0.58 times
he interaction length. In addition, the beam size is cho-
en to balance the trade-off between increasing conver-
ion efficiency and increased distortions in the beam
hape and quality due to spatial walk-off. A reasonable
alance is found when the aperture length is approxi-
ately 1/3 the interaction length.
The best achievable conversion efficiency for noncol-

inear SHG with spectral angular dispersion is indepen-
ent of the interaction length and is approximately equal
o the conversion efficiency for other methods of
ltrashort-pulse SHG under ideal focusing conditions.
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