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Noncollinear quasi-phase matching, in combination with spectral angular dispersion, can be used to broaden
the bandwidth of second-harmonic generation (SHG) beyond the bandwidth for collinear, nondispersed inter-
actions. A general theoretical treatment is presented, in addition to a solution that predicts the generated field
for the case of a Gaussian input field; a comparison is made between this technique and others available for
broadband SHG. An experiment in periodically poled lithium niobate demonstrates SHG of a 138 fs pulse at
1550 nm in a 1 cm length crystal (with a collinear acceptance bandwidth 13 times narrower than the first-
harmonic bandwidth) with minimal spectral narrowing. © 2005 Optical Society of America
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1. INTRODUCTION

Laser gain media capable of short-pulse generation are
available over only a small portion of the optical spec-
trum, whereas applications from spectroscopy to high-
field science and optical communications often require
pulses in inaccessible spectral regions. Nonlinear fre-
quency conversion of short pulses can fill these spectral
regions. To preserve the short-pulse duration, the accep-
tance bandwidth of a nonlinear interaction must match or
exceed the bandwidth of the input pulse. In this paper we
discuss ultrashort-pulse second-harmonic generation
(SHG).

In addition to a broad bandwidth, high conversion effi-
ciency is also desired. The conversion efficiency of conven-
tional collinear SHG in uniform nonlinear materials is
proportional to the square of the interaction length, but
the bandwidth is inversely proportional to the same inter-
action length, resulting in a trade-off between conversion
efficiency and bandwidth. Several methods have been
demonstrated to reduce or eliminate this trade-off.

In the simplest collinear interactions (type 0 quasi-
phase-matched SHG or type I and type II birefringent
phase-matched SHG), the bandwidth of SHG is limited by
the difference in group velocity between the first-
harmonic (FH) and second-harmonic (SH) wave.> A FH
wave packet traveling through a nonlinear medium will
lead or lag (depending on the shape of the dispersion
curve) the generated SH wave that travels at a different
group velocity because of dispersion in the group index of
the nonlinear medium. In a crystal longer than a walk-off
length (the crystal length that results in a difference in
group delay equal to the FH pulse width) this velocity
mismatch results in a SH pulse that is significantly
longer than the FH input, or in the frequency domain has
a significantly narrower bandwidth. Consequently, to pre-
serve the bandwidth of the SH wave, the maximum crys-
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tal length is approximately limited to the walk-off length.
A reduced mismatch between group velocities of the inter-
acting waves results in a longer maximum interaction
length.?

Occasionally, nature provides perfect matching of the
group velocities of FH and SH waves for a particular pair
of frequencies in a nonlinear medium. This is not, in gen-
eral, the same frequency for which the phase velocities
are matched, but with quasi-phase matching (QPM) it is
often possible to simultaneously quasi-phase match and
group-velocity match a SHG interaction at a particular
FH frequency in a given nonlinear material. For example,
in lithium niobate, the FH and SH group velocities are
matched in a type 0 (e+e—e) interaction at a FH wave-
length near 2.6 ,um.3 This method for group-velocity
matching is available only at specific frequencies deter-
mined by the dispersion of the nonlinear material and
may not be generally applicable across the material’s
transparency window. Nevertheless, group-velocity-
matched SHG has been demonstrated in a variety of ma-
terials utilizing both birefringent phase matching and
QPM.*?°

A more general technique for broadband SHG has been
demonstrated through longitudinal patterning of a QPM
grating.lo’11 Longitudinal variation of the QPM period
provides for localized conversion of the different fre-
quency components of a short pulse at different positions
along the propagation axis of a nonlinear device. A distri-
bution of QPM periods allows for a broader distribution of
phase-matched frequencies and an increased bandwidth
compared with a uniform grating of the same length. The
localized frequency conversion in the presence of a differ-
ence in group velocity between FH and SH waves results
in a chirped SHG transfer function.? Consequently, al-
though the SHG of a transform-limited FH pulse that is
used with a chirped QPM grating may preserve the band-
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width, the pulse width will not be preserved. The result-
ing chirped SH pulse may, however, be compressed to the
transform limit by use of a dispersive element.

A fourth technique, the topic of this paper, makes use of
spectral angular dispersion in a noncollinear geometry to
broaden the bandwidth of ultrashort-pulse SHG. In a
critically phase-matched continuous-wave (cw) interac-
tion, the phase-matching wavelength depends linearly on
the angular detuning of the nonlinear crystal. Decompos-
ing a broadband FH field into plane waves, we find that
angular dispersion programs frequency-dependent angu-
lar detuning into the FH field, effectively broadening the
acceptance bandwidth. The idea of using spectral angular
dispersion to broaden the phase-matching bandwidth was
first proposed in the 1970s to broaden the bandwidth of
cw SHG' ™™ and was later suggested for short-pulse
applications.’®® Variations of this technique have been
discussed theoretically”’18 and verified experimentally
for both broadly tunable cw SHG®?° and for ultrashort-
pulse generation16’21’22 in birefringently phase-matched
nonlinear materials. Angular dispersion applied to pulsed
SHG in quasi-phase-matched materials was first pre-
sented in Ref. 23, including calculations for the device
configuration specific to periodically poled lithium niobate
(PPLN), which we experimentally verify in this study. In
addition, we expand on established theory to include a de-
tailed discussion of the conversion efficiency and limita-
tions imposed by diffraction and spatial walk-off.

The remainder of this paper is devoted to the demon-
stration and analysis of broadband SHG of ultrashort op-
tical pulses in the presence of spectral angular dispersion.
In Section 2 we describe a frequency-domain technique of
using spectral angular dispersion in a noncollinear geom-
etry to compensate for material dispersion in SHG. This
technique is equivalent to the matching of the FH and SH
group velocities in the time domain using a tilted pulse
front, as illustrated in Section 3. In Section 4 we present
an experimental demonstration of broadband SHG with
spectral angular dispersion. In Section 4 we demonstrate
group-velocity-matched SHG in PPLN, motivating the de-
velopment of a deeper theoretical understanding of the
conversion efficiency in this noncollinear geometry. It is
this theoretical treatment that occupies the later sections
of this paper.

In Section 5 we derive the scalar wave equations for
noncollinear SHG assuming an undepleted pump and in-
cluding the effects of dispersion, diffraction, and spatial
walk-off. In Section 6 we present a general solution to
these equations, and in Section 7 we discuss the solution
in the particular case of a Gaussian FH field envelope. In
Section 8 we describe the effects that group-velocity dis-
persion (GVD) and spatial walk-off have on the SH field
predicted by the results presented in Section 7. In Section
9 we present the conversion efficiency in the limit of neg-
ligible spatial walk-off and diffractive effects and compare
the resulting expression to the efficiency for other tech-
niques for ultrashort-pulse SHG. In Section 10 we discuss
the scaling of conversion efficiency with regard to focusing
and spatial walk-off and the trade-offs between beam
quality and size and conversion efficiency that result from
tight focusing or increased phase-matching angle. Finally,
in Section 11 we summarize the results of this paper.
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2. FREQUENCY-DOMAIN DESCRIPTION

Consider a FH plane wave with wave vector k(w) and fre-
quency o generating a SH plane wave with wave vector
k(2w) and frequency 2w inside a QPM grating with grat-
ing vector K,. The grating vector is in a direction normal
to the QPM grating lines and has magnitude K,=27/A,
where A is the QPM period.1 This geometry is shown
schematically in Fig. 1. The angle ¢ is measured between
k(w) and K,, and 6 is measured between k(w) and k(2w).
The wave-vector mismatch is defined as the vector sum
Ak(w)=2k(w)-k(20)+K,. The interaction is quasi-phase
matched at frequency o when Ak(w)=0. QPM provides
more flexibility than birefringent phase matching since
the magnitude and direction of K, may be engineered for
a variety of applications.! When a collinear geometry is
used, k(w), k(2w), and K, are parallel vectors but QPM
has similar engineering advantages regarding noncol-
linear interactions.

The magnitudes of k(w) and k(2w) change with fre-
quency because of dispersion in the refractive index of the
nonlinear material; but in the presence of spectral angu-
lar dispersion, the directions of the FH and SH wave vec-
tors may also vary with frequency, and the angles ¢ and @
are frequency dependent. If the angles ¢ and 6 are appro-
priate functions of frequency, the spectral angular disper-
sion may offset the effects of material dispersion, broad-
ening the acceptance bandwidth of a nonlinear device.

The SHG interaction is quasi-phase matched when
AK(w)=0 or the triangle formed by the vectors 2k(w),
k(2w), and K, is closed. Using the law of cosines, we can
write this condition as?

K2+ 4[k(0) 2 - [k(20) 1

cos ¢ =— 4K (o) , (1)

where k(w) is the magnitude of k(w), and similar notation
is used for the SH wave vector and the QPM grating wave
vector. Suppose the phase-matching condition in Eq. (1) is

Ak(w) A?(m)
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2k(w)

1 > o(w)
0(®)

2k('
Fig. 1. Frequency-domain picture of plane-wave noncollinear
QPM SHG. (a) QPM condition at frequency w. (b) QPM condition
at frequency o’ (solid lines), where the dotted lines indicate the
QPM condition at w. If ¢ and ¢’ are chosen appropriately,
Ak(w)=Ak(w’) and angular dispersion compensates material dis-
persion to maintain a constant phase mismatch.
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met at the FH carrier frequency w; with angles ¢, and 6.
If we differentiate Eq. (1) with respect to frequency, then
we find that, to first order in w, the spectral angular dis-
persion required to maintain QPM is

ov

s
o Rl

Jw

(2)

where 6v is the group-velocity mismatch parameter de-
fined as

Ik(w)

Jw

ok(w)
Jw

3)

ov=
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where we assumed that 6y<1 (an exact expression for all
angles may be found in Ref. 23). A similar analysis gives
the resulting angular dispersion of the SH wave in this
dispersion-compensated geometry:
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ap
v R20DO

Jw

(4)

where p=m-60- ¢ is the angle measured between vectors
k(20) and K,.

3. TIME-DOMAIN DESCRIPTION

In Section 2 we showed that for plane waves, QPM can be
maintained over a broad tuning range by introducing
spectral angular dispersion as the frequency of a FH
plane wave changes. Since an ultrashort pulse is a coher-
ent superposition of monochromatic plane waves with a
broad optical spectrum, spectral angular dispersion can
also broaden the bandwidth for the SHG of a short optical
pulse.

In the time domain, angular dispersion manifests itself
as a tilted pulse front.2* This situation is shown schemati-
cally in Fig. 2. Consider at time =0, a FH field (solid out-
line) at the origin in the x—z plane and propagating in the
z direction. It generates some SH field (shaded gray) with
approximately the same spatiotemporal envelope. After a
time ¢, the FH field envelope has traveled a distance u ¢
in the z direction, where u; is the FH group velocity, and
u; is defined as

Pl (5)

1
u;

for the FH (i=1) and SH (;=2) fields. The SH field enve-
lope moves a distance ust at a small angle 6, (determined
by the phase-matching condition) relative to the FH field
direction, with ug=(dks/dwy)~! equal to the SH group ve-
locity. Taking the tilt angle of the pulse front to be ¢, then
the two fields have maximum overlap if 6, is chosen such
that the position of the centroid of the SH field lies along
the tilted pulse front of the SH field. Since the pulse-front
tilt is related to the angular dispersion according to2*
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Fig. 2. Time-domain picture of tilted pulse-front group-velocity-
matched SHG. The solid outline indicates the FH envelope; the
gray shaded area indicates the SH envelope. With appropriately
chosen pulse-front tilt angle ¢, the field overlap is maintained
with propagation and the group velocities are -effectively
matched. The angle ¢ is related to the spectral angular disper-
sion through Eq. (6).

J
y=- arctan(klul «9_

%
e
w )

a simple geometric analysis returns the same result as in
Eq. (2).

4. EXPERIMENT

We demonstrate here type 0 quasi-phase-matched SHG
using spectral angular dispersion to compensate for
group-velocity mismatch (GVM). Figure 3(a) shows a
schematic diagram of the experimental setup. FH light is
incident on a diffraction grating that imposes the requi-
site spectral angular dispersion. The diffraction grating is
then imaged into the center of a PPLN crystal so that the
different frequency components of the FH field overlap in
space inside the nonlinear crystal. The residual FH is
dumped, and the SH is collected and reimaged onto a sec-
ond diffraction grating, which compensates the spectral
angular dispersion of the SH light. Figure 3(b) shows a
more detailed view of the SHG interaction, where the pol-
ing lines of the QPM grating and the noncollinear inter-
action can be more clearly visualized.

Our experiment uses transform-limited FH pulses at
138 fs in a full width at half-maximum (FWHM) duration
at a wavelength of 1550 nm in a 1 cm long PPLN crystal,
with 25 nm of FH bandwidth. At 1550 nm, the walk-off
parameter has a value of 6v=-0.314 ps/mm, and the col-
linear SHG bandwidth of a 1 c¢cm grating is 0.56 nm
(FWHM) at the SH wavelength. The FH pulses are gen-
erated with a Spectra-Physics Opal synchronously
pumped optical parametric oscillator operating at a wave-
length of 1550 nm, pumped by a Spectra-Physics Tsunami
mode-locked Ti:sapphire laser. Pulses are 0.58 nd in en-
ergy and are delivered at a repetition frequency of 82
MHz. The FH is dispersed using a diffraction grating with
400 lines/mm at an incident angle of 21 deg to give an an-
gular dispersion of 1.84 radum in free space. When the
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beam is imaged into the PPLN crystal with unit magnifi-
cation, the angular dispersion is 0.86 rad/um inside the
crystal.

The PPLN crystal is 1 cm in length, with a poling pe-
riod of 9.256 um, or 50% of the collinear phase-matching
period. The duty cycle was measured to be 25.5% (as com-
pared with the ideal 50%), resulting in an effective non-
linear coefficient? of 12.15 pm/V. The vector phase-
matching condition requires an angle of 60.96 deg
between the FH beam and the grating wave vector. The
poling lines of our PPLN device are at 60 deg relative to
the input facet, allowing near-normal incidence to the
PPLN crystal. The phase-matching condition calls for an
angle between FH and SH waves of 1.92 deg, which, ac-
cording to Eq. (34), matches the spectral angular disper-
sion required for group-velocity matching.

The diffraction grating is reimaged at the center of the
PPLN crystal so that the spectral components of the FH
beam, although propagating at different angles, overlap
in space inside the nonlinear crystal. The beam is focused
elliptically using cylindrical lenses to achieve a spot
530 um wide (1/e? intensity full width) in the x (dis-
persed) dimension and 180 um in the y dimension. The
SH is then collected, and the beam waist (located in the
center of the PPLN crystal) is reimaged onto a diffraction
grating with 830 lines/mm at an incident angle of 76.6
deg where the spectral angular dispersion of the SH field
is compensated. When we use the simple imaging system
shown in Fig. 3, care must be taken to minimize spatial
phase distortions due to the imaging system,'® which can
result in spatial chirp if the lenses are not sufficiently
placed in the far field. (We use lenses with a 15 cm long

(a)
SH

I PPLN

grati ng
‘ > T6iis gratmg

Fig. 3. Schematic diagram of the PPLN experiment with spec-
tral angular dispersion. (a) FH light incident on a diffraction
grating acquires spectral angular dispersion. A lens images this
spot into the PPLN crystal where SH light is generated. This SH
is then reimaged onto an output diffraction grating where the
spectral angular dispersion is undone. (b) A closeup view of the
SHG interaction illustrating the noncollinear interaction in a
tilted QPM grating.
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Fig. 4. Results of SHG with spectral angular dispersion in
PPLN. Autocorrelation (left) and spectrum (right) of tilted pulse-
front SHG (top) and collinear SHG in an identical length crystal
in the presence of group-velocity walk-off (bottom). With spectral
angular dispersion, the measured autocorrelation has a FWHM
of 240 fs and a spectral FWHM of 8.3 nm, nearly 14 times
broader than the spectrum of collinear SHG in a crystal of iden-
tical length.

focal length, placed 30 cm from the diffraction grating and
30 cm from the PPLN crystal.) Use of a telescope as de-
scribed by Martinez in Ref. 15 would eliminate the spatial
phase distortions present in a single-lens system.

The resulting SH is then analyzed using an autocorr-
elator and an optical spectrum analyzer. The measure-
ment results are displayed in Fig. 4. For comparison, we
also show the measured spectrum and autocorrelation for
an identical-length crystal in a traditional collinear orien-
tation, in which the effects of GVM dominate the SHG
output. The bandwidth in the noncollinear case is 8.3 nm
(FWHM) and is more than 14 times the group-velocity-
limited bandwidth of the collinear interaction. Ignoring
any bandwidth limitations from SHG, the expected SH
bandwidth from FH pulses with a bandwidth of 25 nm is
calculated at 9.3 nm (assuming Gaussian FH pulses), and
our experiment demonstrates 89% of this maximum
bandwidth.

The output SH pulse is 170 fs (FWHM, calculated from
the autocorrelation assuming a Gaussian pulse shape) in
duration, approximately 1.5 times the transform limit in-
dicating some residual spectral phase on the SH pulses.
Diffraction gratings impose not only linear spectral angu-
lar dispersion, but higher-order angular dispersion as
well onto the FH and SH fields. When the linear spectral
angular dispersion is compensated, the higher-order dis-
persion is not necessarily compensated simultaneously,
resulting in SH output with spatially varying frequency
chirp. (A discussion of the first-order angular dispersion
resulting from the reflection of a short optical pulse from
a diffraction grating may be found in Ref. 24, Section 1.5,
and a generalization to higher-order dispersion is
straightforward.) The magnitude of the higher-order spec-
tral angular dispersion can readily be calculated if the dif-
fraction grating line spacing and the incident angles are
known. For the experiment reported in Section 4, the qua-
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dratic phase difference across the bandwidth of the SH
pulse evaluated at the beam waist is approximately equal
to 7 and is of the correct magnitude to approximately ac-
count for the measured difference in pulse duration from
the ideal transform-limited case.

The measured conversion efficiency with a FH pulse
energy of 0.58 nd is 6.7% (SH energy of 38.7 pJ). The un-
depleted pump conversion efficiency for near-field Gauss-
ian beams with FH pulse energy U; and a nonlinear co-
efficient d,, is given by2

2\2md?  U,L*

n= ’
eocn2n%)\% W, Wy, Ty

(7

where n; is the refractive index at the FH (i=1) and SH
(1=2) wavelengths, \; is the FH vacuum wavelength, and
L is the interaction length. The FH field is assumed to be
a Gaussian field in space and time, with a 1/e intensity
half-width duration of 7, and a beam width equal to w,
and w, (also 1/e intensity half-width) in the transverse x
and y dimensions, respectively. If we compute the energy
conversion efficiency using the measured beam size of
w,=187 um (1/e? full width of 530 um) and w,=64 um (
1/e? full width of 180 um) and a pulse duration of 138 fs
(79=84 fs) in our experiment, we find that an estimate for
the normalized conversion efficiency is 7y/U.L>
=108%/(nd/cm?); with a 1 em crystal length and 0.58 nJ
of pump energy, this predicts conversion well into the
pump depletion regime.

It is clear that the simplified plane-wave analysis does
not accurately predict the conversion efficiency of noncol-
linear SHG with angular dispersion; in Sections 5-10 we
present a theory that more accurately predicts the conver-
sion efficiency. In addition, our model includes the effects
of GVD, diffraction, and spatial walk-off. The influence of
these effects on noncollinear, group-velocity-matched
SHG is discussed in detail.

5. THEORETICAL MODEL

SHG of a strongly tilted pulse in a noncollinear geometry
departs from a plane-wave description in several ways.
Perhaps the most obvious is the influence of spatial walk-
off, where the generated SH field envelope walks off of the

@ Y (b .

\
| -
\

L ULTO %
\/

Fig. 5. Field envelope of a tilted pulse with (a) tilt angle ¢ and
(b) an untilted pulse. The width Ax that determines the impor-
tance of diffraction may be much less than the beam width w for
a tilted pulse. Such a tilted field will experience diffractive effects
with a characteristic length L} =k,Ax? rather than the diffraction
length Lz=kqw? determined by the beam width w,.
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generating FH beam because of the noncollinear nature of
the interaction. In a more subtle way, the pulse-front tilt
also has a profound influence as a tilted pulse is affected
by diffraction more than an untilted pulse of the same
beam width.

As illustrated in Fig. 5, a field with beam width w, and
temporal pulse width 7, subject to a large pulse tilt has a
cross section Ax <w,. In Fig. 5 we show field envelopes for
a tilted pulse with tilt angle ¢ [Fig. 5(a)] and an untilted
pulse [Fig. 5(b)]. In both cases, the envelope propagates
normal to the x axis. The diffraction length for a beam of
width wy is LR=kw(2] where k=27n/\ is the magnitude of
the wave vector, given in terms of the refractive index n
and the vacuum wavelength N. However, diffraction of a
tilted optical pulse has a characteristic length of Ly
=kAx?<Lp. Here we present a model that accounts for
this difference and examine its effects on the generation
of strongly tilted pulses.

To derive the equations that govern noncollinear SHG
with spectral angular dispersion, we consider undepleted
pump SHG in a nonlinear, nonmagnetic dielectric with
propagation direction z and variation in one transverse
dimension x. The frequency-domain coupled scalar wave
equations are’

&zél(z,x, ) ﬁzél(z,x, )

P +kA(E(z,x,0) =0, (8)

ﬁzﬁz(z,x,w) &ZEZ(z,x,w)

922 dx?

+ B2 (0)Ey(2,x, )
= - uwiPyi(2,2,0), (9)

where k2%(w)=w?e(w)/c? and PNL(z,x,w) is the nonlinear
polarization. Subscripts 1 and 2 refer to the FH and SH
field, respectively. It is convenient to define an electric
field envelope function B;(z,x,t):

E,(z,x,t) = E(B,(z,x,t)expiw;t — ik, ;z — ik, x), (10)

where k,; and k,; are the z and x components, respec-
tively, of the wave vector k(w;) evaluated at the carrier
frequency w;. We explicitly factored out the FH field am-
plitude E, so that B;(z,x,t) is dimensionless and the FH
envelope has unit amplitude. The magnitude of the wave
vector at the carrier frequency is k; and is related to the
components by k?:kf’ﬁkii. The corresponding
frequency-domain electric field Ei(z,x, w) is related to the

Fourier transform Ei(z,x,Qi) of this time-domain enve-
lope as

Ei(2,x,0) = EoB,(z,x,Q,)exp(~ ik, z — ik, x),  (11)

where );=w-w; is the frequency detuning. To examine
the effect of dispersive terms, we expand k%(w) in a Taylor
series around the carrier frequency for the respective
fields:
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1 1
k2(w) = kLZ + 2klu—Ql + _29? + ki,BiQiZ, (12)

13

where k; is the magnitude of the wave vector at the car-
rier frequency w;, u; is the group velocity defined in Eq.
(5), and B; is the GVD coefficient defined as

Pk

Jw?
o,

i

Bi= (13)

For periodic nonlinear media, we assume that the nonlin-
ear coefficient distribution d(z,x) is dominated by a uni-
form grating vector with z and x components designated
by K, , and K, ., respectively, and we find that the nonlin-
ear coefficient distribution is given by

d(z,x) = d,, exp(iK, ,z + 1K, ,x), (14)

where d,, is the Fourier component of a QPM grating of
order m. The nonlinear polarization is defined as

PNL(Z;x5t) = fod(Z,x)E%(Z,x,t)~ (15)

Substituting the above expansions and envelope defini-
tions into the coupled equations and Fourier transform-
ing, we find the time-domain form of the coupled envelope
equations including dispersive terms to second order. In
the following equations [Eqs. (16) and (17)], for simplicity
we drop the arguments from the field envelopes B;
=B;(z,x,t) and orient our coordinate system along the di-
rection of propagation of the FH wave, such that %, ;=0
and kz,lzkl'

#B; i By By  kyoB; 1 &#B; i #B,
ikt —— =2 — = ——— — k1B
d2? Yor oo Tup ot ud oot LY
=0, (16)
#By By #By  IBy  k,5dBy 1 &By
a2 PR G TRk R T T
9 uy ot
#By,  4wid,E,
~kyBo—5 =~ 5B} exp(-iAk.z — iAkx).
ot c
(17)

The z component of the wave-vector mismatch Ak=2k;
~ky+K, is defined as Ak, =2k -k, 3+K, ., and the x com-
ponent is Ak,=—k, 9+ K, ,. Hereafter we assume that the
interaction is quasi-phase matched at the carrier frequen-
cies, i.e., Ak,=0 and Ak,=0.

It is convenient to change coordinate systems to a ref-
erence frame that moves along with the FH field at the
group velocity u;. We define a new time coordinate T'=t
—z/uq, which is the time delay relative to the center of a
freely propagating field envelope at the FH group velocity.
The resulting coupled equations, in the limit of a slowly
varying field envelope, are

B, 1 L #B, L #B,
+ — =
9z  2Lpy 9x* Lpy o7?

0, (18)
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0B, LiBy LBy, 1 L #By, L B,
i i — i — e oy B
dz Lg oT La ax 2LR,2 ax LD,Z (9T2
=0, (19)
where the coupling coefficient is
27d,,E L
02 =, (20)
nghg

and the normalized coordinates z=z/L, x=x/w,, and T
=T/ 1 are defined relative to the interaction length L, the
characteristic beam size w(, and the temporal pulsewidth
70- Note that both spatial and temporal walk-off terms ap-
pear only in the equation for the SH field, indicating that
our chosen reference frame is along the direction of propa-
gation of the FH field (k, ;=0) and moves at the FH group
velocity.

The coupled equations are now clearly cast in terms of

characteristic lengths: the aperture length
Wo
a= P (21
tan(6,)

where tan(6))=k,9/k,9; the group-velocity walk-off
length

70
L,= 5 (22)
the Rayleigh length
Lg; = kw; (23)
and the dispersion length
275
Lp;= E (24)

Equations (18) and (19) are normalized coupled equa-
tions for the SHG of short pulses in a noncollinear geom-
etry, allowing for spatial walk-off, diffraction, temporal
walk-off, and GVD. To include the effects of spectral an-

gular dispersion, we define an angular dispersion param-
24

eter for the FH wave™ as
kiwy Ip(w)
Y11= ) (25)
k) Jw

@1

which is also related to the pulse-front tilt angle ¢
through
Tol1

tan z/z:—w—yl, (26)
0

according to Eq. (6).

A field envelope B;(Z,%,T) that acquires spectral angu-
lar dispersion y; undergoes a transformation to a tilted
pulse-front envelope where the time delay of the field at
transverse position X is advanced or retarded by an
amount vy;X, and the field transforms accordingly:
B,(z,%,T)—B;Z,%,T-y%).**

A strongly tilted (|y;|>1) field envelope diffracts quite
differently than an untilted field envelope, and, as illus-
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trated in Fig. 5, a tilted pulse may be influenced by dif-
fraction even over distances much smaller than the Ray-
leigh length set by the beam width wg,. A tilted field
envelope in a Cartesian coordinate system can be repre-
sented by an untilted field in a tilted coordinate plane. We
show that this transformation introduces an angular dis-
persion term into the coupled equations, which, while
physically nonintuitive, allows a simple mathematical
treatment. The advantage of such a transformation be-
comes apparent as our intuition returns for effects such
as diffraction and dispersion. In this transformation, dif-
fraction is separated into beam diffraction (determined by
the beam width w) and diffraction due to pulse-front tilt
that we treat as an effective GVD. In this formulation, we
need only consider new effective GVD, group-velocity
walk-off, and diffraction coefficients.

A transformation of Egs. (18) and (19) from coordinates
(z,%,T) to the tilted coordinates (Z,%,7=T - y,%) involves a
transformation of the differential operators

J J J
N (27)
ax ax Jar
d J
— -, (28)
oT JaT
& & f(ﬁ & 29)
— s — 4 YP— 2y —, 29
w2 a2 a2 Mamar
P P (30)
e 30
g% 97
and results in the coupled-wave equations
B, 1L #B, L #B, L #B;
— - —— T =
9z 2Lgy ox* Lp, 7 Lpi10xd7
(31)

0B, (L L)aB2 LB, 1L #B,

e R el B s
0z L L,) ot L, ox 2Lgs ox

g a

L #B,

L B, )
+L1'),2 = + Y1LR,2 P ceBi=0. (32)
The time variable 7 may be understood as the normalized
time delay relative to the time delay of the envelope cen-
ter (y,x) for each position x. The coefficients for the x de-
rivatives do not change, but the coefficients for time de-
rivatives do change; and there appears a mixed angular
dispersion term with coefficients 2y,L/Lp ;. The diffrac-
tion of tilted pulses in this transformation results in an
effective dispersion length given by

1 1 19

= - = . (33)
Lp; Lp; 2Lg;

The effective dispersion is a combination of GVD and ef-
fective temporal dispersion introduced by the diffraction
of a tilted pulse front. The diffraction of the tilted pulse
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front as shown in Fig. 5 is now separated from the diffrac-
tion of the beam and characterized as an effective GVD.
The field envelopes in Egs. (31) and (32) are untilted since
we have instead tilted the coordinate system. Our intu-
ition again returns regarding diffraction and dispersion,
and we can ignore the effects in Egs. (31) and (32) term by
term when the interaction length L is much less than the
corresponding characteristic length. We will show that
the added complication introduced by the mixed angular
dispersion term (d%/dxd7) poses little difficulty in the
analysis.

If we choose the pulse-front tilt so that y;=-L,/Lg, the
GVM term is eliminated from Eq. (32). Recalling the defi-
nition of y; from Eq. (25), we find a simple relation be-
tween the spectral angular dispersion and the phase-
matching angle between the FH and SH waves:

dPp(w) Sv 34)
Jw N kl (90 ’

1

which is identical to that given in Eq. (2). For the remain-
der of this paper, we assume that y;=-L,/L, and thus
that the effects of GVM may be neglected.

For a particular QPM grating and choice of FH and SH
wavelengths, the phase-matching angle 6, is fixed and,
through Eq. (34), so is the required spectral angular dis-
persion. If the collinear limit is approached (6,—0), we
find that the spectral angular dispersion required for
group-velocity matching becomes very large. Conversely,
if the untilted limit is approached (d¢/dw— 0), the phase-
matching angle required for group-velocity matching
must also be very large, and the result will be that a large
beam or a short interaction length will be required to
avoid the effects of spatial walk-off.

To take advantage of a long interaction length, a small
phase-matching angle is typically desired, and v, is large.
Consequently, the dispersive terms in Eqgs. (31) and (32)
cannot, in general, be ignored even if the crystal is shorter
than the material dispersion length, since an effective dis-
persion arises that may be many times the magnitude of
the conventional GVD.

6. GENERAL SOLUTIONS

In this section we solve Egs. (31) and (32) in the limit of
an undepleted pump and ignoring beam diffraction. These
equations can be more easily solved in the temporal- and
spatial-frequency domains, so we Fourier transform the
coupled equations using the transform pair

1 (™ (.
F(x,r):;TJ f F(£,Q)exp(iQr—iéx)dé&dQ, (35)

. 1 (™ (~
F(f,Q):ZJ f F(x,7exp(—iQ7+ié&)dxdr. (36)

The temporal- and spatial-frequency domain coupled
equations are

B, L __, L __ .
- Q%Bl+71L_91§1B1=0, (37)

Jz D1 R,1
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By L_. L _,. L __. .
i+ 35232 - ——QO5By+ 71L_92§2BQ =col's(2,5,(),

0z a D,2 R,2
(38)

where ;= 7y(w—w;) is the normalized frequency detuning
and Ei=w0(kx_kx,i) is the normalized spatial-frequency
detuning. The transform of the square of the FH field en-
velope is written as the self-convolution of the transform
of the FH envelope:

. _ _ 1 o0 xA _ _ . _
F2(§,§2,92)=Ef f B4(2,¢,Q')B1(Z,&, - &,0,

-0)dean’. (39)
The solution to Eq. (37) is

« _ .o L _ L
B4(2,61,41) =Bo(§1,91)expl— L(,_Q§ - 7’1_9151)51 )
LD,1 LR,l

(40)

where By(£;,0);) is the input FH field envelope, defined at
z=0. We define the input FH envelope at Z=0 in the cen-
ter of the crystal, instead of at the incident face (z=
—1/2) since the former is typically the location where the
dispersed field is reimaged from the diffraction grating
and where the effective GVD due to pulse-front dispersion
is arranged to vanish. Of course, the total effective GVD is
only zero at this point if material GVD may be ignored; so
in the case where material GVD is nonnegligible, one
must take care to include the material GVD from the first
half of the nonlinear crystal into this definition of the field
envelope.

According to Eq. (40), the spectral amplitude of the FH
field does not change, consistent with the assumption of
an undepleted pump, but it acquires a spectral phase re-
sulting from effective dispersion and spectral angular dis-
persion. To obtain the solution for the SH, it is convenient
to define

C’\;2(2’329‘(_)’2) = 32(25327‘(_)‘2)

(L_ Lo Lo
xexp| —i| —& - W+ Dbz |.
Ly~ Lpy °  'Lga

(41)

The field éz has the same spectral amplitude as 32, but
explicitly factors out the spectral phase of a freely propa-
gating SH field so that we can more clearly see the effects
of frequency conversion.
We find on substitution of the definition in Eq. (41) into
Eq. (38) that the solution for the field 6}2(2 ,&9,Qy) is
1/2
G4(Z,£2,(29) =f —icoFy(2,£5,(25)

-1/2

L _ L ,
Xexp| —i| —&-—Q
P 7 &—

a LD,2

L _ _

R,2

Schober et al.

The limits of integration indicate that the interaction oc-
curs over —L/2<z<L/2. Equation (42), along with the
definitions in Eqgs. (39) and (41) and the FH solution in
Eq. (40), represents the solution for broadband SHG of a
tilted FH field with angular dispersion characterized by

Y1

7. SOLUTION FOR A GAUSSIAN FIRST-
HARMONIC FIELD ENVELOPE

Equation (42) is a general solution for tilted pulse SHG,
but in its current form is not particularly instructive. We
can evaluate this expression in the particular case of a
Gaussian FH input field; the resulting SH field expres-
sion will give insight into the behavior of a tilted pulse-
front SHG. We define an initial FH field envelope

5 ( %2 #)
x,7)=exp|-—-—]|, 43
0(X,7) = exp . (43)
where the characteristic beam size w, and pulse width 7,
are defined as 1/e intensity half-widths of the field enve-
lope Bg(x,7). Using the transform pair in Egs. (35) and
(36), the frequency and spatial-frequency domain FH field
envelope is

2 62
4 1) . (44)

Bo(E i) = exp| - - —
o(é1,y) XP( 2 9
Substituting this Gaussian field into Eq. (40) we can com-

pute Fy(z, &, Q) using Eq. (39) to find

. - 1
Fy(z,8,09) = I L \2 |%
2{1+2i,—§+ ﬁ(—) 22}
Lp, R1
0 L\ &
Xexp| ——|(1+2i—2z|-—
4 D1
L 067
+iyy— . 45
WlLR,l 9 (45)

Substituting Eq. (45) into Eq. (42), we find an expression

for the output field envelope Gz, related to 1§2 through Eq.
(41):

. )
A - — —1Cy Qz &
Go(z =1/2,4,0,) = 5 P\ Iy(q), (46)

4 4
where
1/2 .
exp(iqz)
Iy(q) = f s T2, (47)
-1/2 L L
1+2i——z+%| — | 2°
Lp, Lg,
q= 715Rﬁzgz + 5Dﬁ§ —AE2- (48)

The first term in the expression for gq represents mis-
match in the spectral angular dispersion between FH and
SH fields, where we define
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1L L

2Lny Lns w%klkz(kz 2k1). (49)
Although we have assumed that the FH and SH angular
dispersion is equal to that required to maintain phase
matching across the bandwidth of our short pulse, accord-
ing to the conditions given in Egs. (2) and (4), dispersion
in the refractive index causes these two waves to disperse
differently as their frequency components separate in
space. The first term in g reflects the mismatch in angu-
lar dispersion and is equal to zero if there is no angular
dispersion y;=0 or if there is no difference in the refrac-
tive index at the FH and SH waves n,—ny=0.

The second term represents mismatch in effective
GVD:

(L 1L)L< ,31) VAL _—

p=|l—-——=—|Bo-— |+ ———— — k).

v LID,Z 2Lb,1 27% P 2 211’(2)]4’/1732( ' ?
(50)

The first part is the mismatch in material GVD, and the
second part represents the mismatch in effective GVD
that arises from the diffraction of a strongly tilted pulse.
Depending on the geometry, the total effective GVD may
be dominated by either effect, but we note that the effec-
tive dispersion term is of the order of y; larger than the
angular dispersion effect in Eq. (49), so the angular dis-
persion mismatch may be ignored in the limit |y;|> 1. The
third term in g represents the effects of spatial walk-off
with the parameter A defined as the ratio

Azf' (51)

a

The behavior of SHG in the presence of spectral angular
dispersion depends centrally on the evaluation of I,(q),
which represents the influence of spatial walk-off and
GVD and can affect both the amplitude and the shape of
the SH envelope. The parameter ¢ includes all frequency
and spatial-frequency dependence and groups together
the effects of angular dispersion mismatch, effective GVD
mismatch, and spatial walk-off. To determine the magni-
tude of these effects, we need only to examine each of the
terms in the expression for ¢ and evaluate the depen-
dence of I5(q) on q.

We can evaluate I5(g) in some practical limits that sim-
plify the mathematics but still reveal clearly the essential
physics. The first approximation is to assume strong spec-
tral angular dispersion, or |y;|> 1. In addition, we assume
that ﬁ»ZLR/LD, or equivalently, that the effective GVD
is dominated by diffractive effects instead of material
GVD and, according to Eq. (33), Lbylz—2LR,1/y§. With
these simplifications,

. f”z exp(igz) 4 o
2(q) - 1/2 (1 _ 2iDZ)1/2 Z; ( )

where we defined the ratio D=—L/Lb’1%y‘fL/2LR,1 to
simplify the notation. Since ¢ is a function of O and

&, I,(q=0) represents the value at Q=0 and £=0, or the
midband amplitude reduction. At the midband, the inte-
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gral can be readily evaluated, and we define this midband
amplitude as I(D):

1
I(D) =15(q = 0) =2I{5(1 —iD)m], (53)

where Z(x) denotes the imaginary part of x. This function
is plotted in Fig. 6. When D<1, Iy=1 and the midband
SH amplitude is not influenced by the effective GVD. If
D>1,1,~(2/D)"? and the midband SH amplitude de-
creases with an increasing ratio of |L/Lp, 4.

In the general case the integral in Eq. (52) cannot be
expressed in terms of elementary functions, but may be
expressed in terms of the complex error function defined
as

r4

erflz) = — [ exp(-u?)du, (54)

VTJo

and I5(q) is given by

q 2m\2 |gf1 \|"?
I5(q) = sgn(q)exp n)F ) orf Sl ’

(55)

where sgn(q)=q/|q|.
In Fig. 7 we show a few cases of I5(g) for different val-
ues of D, including the limiting cases of D>1 and D <1.
When D<1,

I5(q) = sinc(q/2), (56)

where sinc(x)=sin(x)/x. When D>1, I,(q) has the ap-
proximate solution

9\ 12 )\ 12 _ig\ 2
I2(q)=sgn(q)<5) I[(;) erf(?) } (57)

In this limit, only the amplitude and not the shape of I5(q)
is influenced by the value of D.

10 10 10° 10 10°
D

Fig. 6. SH amplitude reduction /(D). The solid curve is I(D),

and the dashed—dotted lines indicate asymptotic behavior for D

<1 where I(D)=1 and D> 1 where I,(D)=\2/D.
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Fig. 7. Evaluation of the response function I,(g) for several val-
ues of D, normalized to the value at ¢=0. When D<1,15(q)
~sinc(q/2). When D> 1,1,(q) is asymmetric with a slowly decay-
ing tail.

8. EFFECTS OF GROUP-VELOCITY
DISPERSION AND SPATIAL WALK-OFF

Spatial walk-off and GVD are important effects influenc-
ing the behavior of SHG. In their absence, I5(¢g)=1 and
the solution for tilted pulse-front SHG in Eq. (46) is
trivial. The magnitudes of these effects are set by the
magnitudes of the constants in Eqs. (49) through (51).
These constants depend not only on material parameters,
but on experimental conditions (i.e., interaction length,
beam waist, pulse-front tilt) as well.

To understand the effect of spatial walk-off and GVD on
conversion efficiency, bandwidth, and beam shape, we in-
vestigate the influence of these effects on the solution in
Eq. (46). All frequency and spatial-frequency behavior is

contained in I5(q), since g is a function of O and &

The effect of GVD manifests itself in two forms. First,
when the magnitude of dispersion at the fundamental fre-
quency is large, the peak intensity decreases with propa-
gation distance, reducing the effective interaction length.
The magnitude of the FH dispersion appears in the ratio
D and consequently affects the midband SH amplitude re-
duction in Eq. (53). This reduced efficiency is the result of
a reduced peak FH intensity in the presence of dispersion.
Since the magnitude of D does not directly affect the
shape of I5(q), the frequency content of the SH field is not
affected by the magnitude of the effective dispersion rep-
resented by D.

Although the magnitude of GVD does not directly affect
the bandwidth of SHG, the mismatch between the effec-
tive dispersion of FH and SH fields (represented by the
coefficient &p) may influence the SH frequency content.
When the effective GVD of the FH polarization and the
SH field are mismatched, the result is a phase mismatch
that can accumulate across the bandwidth of a short op-
tical pulse, limiting the bandwidth of the SHG interac-
tion. If the largest term in ¢ is the GVD term in Eq. (48),

then ¢= 8,02 where &p is the effective GVD mismatch,
defined in Eq. (50). The frequency-domain field envelope

G, is the product of I, and the transform of the square of
the envelope of the FH field, as in Eq. (41). In Fig. 8 we

Schober et al.

show the bandwidth reduction versus &p for several val-
ues of D. With negligible dispersion mismatch (|6p|<1),
the expected bandwidth is V2 times larger than the input
FH bandwidth. The bandwidth decreases approximately
as |8p| 12 for |6p|>1. To preserve the bandwidth of the
SHG interaction, we should choose the interaction length,
pulse-front tilt, and beam size such that |5p|<1.

Note that when D> 1, the bandwidth is asymmetric in
dp and even exhibits a larger bandwidth than the §p=0
case. This is due to the asymmetry in I5(q) for D>1

shown in Fig. 7. Since ¢ is quadratic in Q, and the enve-
lope of I5(q) is not symmetric in ¢, the behavior can be
quite different for different signs of Jdp.

When q [see Eq. (48)] is dominated by the spatial walk-
off term, g ~-A&,, where A=L/L,. In this limit, I, is in-
dependent of Q; and even in the limit of large spatial
walk-off, the frequency content of the electric field is un-
altered. Walk-off will, however, limit the spatial-
frequency content for large values of |A| and accordingly
affects the size and shape of the SH beam. Although neg-
ligible dispersion mismatch (|8p|<1) is a necessary condi-
tion for preserving the bandwidth of SHG, spatial walk-
off does not affect the frequency bandwidth. In Fig. 9 we
show the effects of varying spatial walk-off on the output
beam size and shape for different values of the effective
dispersion characterized by D. In all cases, as A increases,
the beam size increases when I5(g=-A&;) becomes nar-
rower than the field envelope, or when |A|~1 and the field

envelope is influenced by the shape of Iy(g=-A&). Al-
though when D <1 the resulting beam profile for |A|>1
would be a top hat [i.e., with a Fourier transform propor-
tional to I5(q)=sinc(q/2), at larger values of D we can see
this is not true. In Section 10 we discuss how the beam
size and quality trade off against conversion efficiency.
In this section we have considered separately the influ-
ence of spatial walk-off and GVD mismatch. When one ef-
fect is clearly dominant it influences separately the fre-
quency and spatial-frequency content of the SH envelope,
i.e., spatial walk-off does not influence the frequency con-

— D=173
= D=01
18k T D=0

-25 -20 -15 -10 -5 é} 5 10 15 20 25

Fig. 8. SHG acceptance bandwidth versus effective GVD mis-
match parameter &y defined in Eq. (50) for several values of the
FH effective dispersion parameter D. Here we neglect spatial
walk-off and assume that g~ 5,02 Minimal loss of bandwidth
results when |5p| <1 regardless of the magnitude of D.
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Fig. 9. Effects of spatial walk-off on beam profile for several val-
ues of the spatial walk-off parameter A=L/L,. On the left is plot-
ted the near-field SH amplitude versus x, and on the right the
field amplitude versus spatial frequency (proportional to the far-
field SH amplitude distribution after angular dispersion has
been compensated) is shown. The shape of the response function
I,(q) is influenced by the dispersion parameter D, while increas-
ing A changes the scaling of the width of the response function in
the spatial-frequency domain since g=A¢. When A<1, the re-
sponse function is much wider than the polarization distribution,
and both the near-field and far-field distributions are Gaussian
for all values of D. When A >1, the response function is narrower
than the polarization distribution, and the SH amplitude is in-
fluenced by the shape of I,(g). When D<1 (top graphs), I5(q)
~sinc(q) and the near-field distribution approaches a flat-top
function. For larger D (middle and bottom graphs), I5(g) departs
from the sinc(q) behavior as shown in Fig. 7, and the near-field
and far-field distributions reflect the distortion of the response
function when A>1.

tent of the SH envelope, and GVD mismatch does not af-
fect the SH spatial envelope. In general, however, ¢ con-
tains terms influenced by both spatial walk-off and GVD
mismatch as shown in Eq. (48). If both L/L, and &p are of
comparable magnitude, they must be considered together
in the evaluation of I5(q). Consequently the frequency and
spatial-frequency behavior may not be separately attrib-
uted to the magnitude of GVD mismatch and spatial
walk-off, respectively.

For the remainder of this paper, we assume that |&p|
<1 so as to preserve the bandwidth of SHG, and the ef-
fects of GVD mismatch are neglected.

9. CONVERSION EFFICIENCY IN THE
ABSENCE OF SPATIAL WALK-OFF AND
GROUP VELOCITY DISPERSION

With the field solution of Eq. (46), we can compute the en-
ergy conversion efficiency for tilted pulse-front SHG as
the ratio of SH energy to FH energy:

J f B,z = 1/2,€,Q)2d€d 0
Uz noJ_»J_«
p=—=— . (58)

U, e
L J J |By(E 0)PdEA0

We evaluate the conversion efficiency using the definition
of GQ in Eq. (46), its relation to Ez in Eq. (41), and the FH
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field used in this Gaussian example from Eq. (44). In the
limit of negligible effective GVD and angular dispersion,
I,~1. If we write ¢y [defined in Eq. (20)] in terms of the
FH pulse energy,

8md?,  U,L?

ci= (59)

b
eocngn 1)\% Wo0, Ty
where o, is the effective cross section of the FH beam in

the transverse y dimension (equal to V7w, for a Gaussian
field). The conversion efficiency is

ng C; 47Td3n U1L2

=——= :
ni 2 eengniNiwooym

(60)

The conversion efficiency is equal to the well-known re-
sult for an untilted Gaussian FH pulse in the absence of
GVM, GVD, diffraction, and spatial walk-off.2 The peak
power conversion efficiency is nzcg/ ni, and an additional
factor of 1/2 results from our averaging this peak power
efficiency over Gaussian envelopes in the transverse x di-
mension and in time. Our theoretical model ignores varia-
tions in the field envelope in the transverse y dimension
and consequently assumes an equal effective area of the
FH and SH envelopes in this dimension. However, consid-
ering a Gaussian envelope in y simply involves substitut-
ing the FH effective area o, = N mw, and further reducing
the expression in Eq. (60) by a factor of 1/V2 due to the
averaging of conversion efficiency over a Gaussian enve-
lope in the y dimension. With such a substitution, Eq. (60)
is equivalent to the plane-wave estimate in Eq. (7).

In the presence of GVM, if we choose our interaction
length L=2L, to preserve the pulse width,? the conver-
sion efficiency for an untilted Gaussian FH beam limited
by GVM is

38.3d), UL} L2
=8.05_;m, (61)

VM €0Cn2n%)\% wO(TyTO
and we find that using spectral angular dispersion gives
an advantage of 0.33L2/L§ in conversion efficiency over
using a collinear geometry and a bandwidth-limited crys-
tal length equal to 2L,. Using a chirped grating with an
optimum grating chirp (Dg=36v/7L) and an unchirped
FH pulse, we obtain a conversion efficiency of?

L L,
7ec = 1.37T— ngym = 4.18— 7o, (62)
L, L

and the efficiency for the spectral angular dispersion tech-
nique is greater by a factor of 0.24L/L, than when we use
a chirped QPM grating.

10. CONVERSION EFFICIENCY IN THE
PRESENCE OF SPATIAL WALK-OFF AND
GROUP-VELOCITY DISPERSION:
OPTIMIZING THE FOCUSING CONDITIONS
AND PHASE-MATCHING ANGLE

Although it is always possible through appropriate choice
of the phase-matching angle and the beam size to design
an experiment with negligible effective GVD and spatial
walk-off, it is not true that those conditions result in the
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peak conversion efficiency. Here we assume that the GVD

mismatch parameter Sp<1, so that g=—-A% with A
=L/L,.

In designing an experiment we are free to choose the
focusing conditions, and (in the absence of optical dam-
age) there exists an optimum focusing condition for peak
conversion efficiency. Boyd and Kleinman showed that,
for cw interactions in the absence of spatial walk-off,
there exists an optimum focusing condition approximated
closely by confocal focusing, i.e., for a diffraction length
equal to half of the crystal length.?’ The nature of this op-
timum condition involves a trade-off between high peak
intensity and an effective interaction length that may be
less than L for tightly focused beams. For beams with
waists larger than the confocal waist, decreasing the
waist results in an increased intensity that is approxi-
mately constant over the interaction length, and the re-
sult is higher conversion efficiency. For beams smaller
than the confocal waist, however, the effective interaction
length is reduced below the crystal length L and the con-
version efficiency decreases with tighter focusing. An
analagous qualitative argument may be made regarding
the effective dispersion that exists in tilted pulse-front
SHG, and below we will show that the maximum conver-
sion efficiency is achieved when the interaction length is
equal to 1.73 times the effective dispersion length. This
result is analagous to the focusing condition for the best
SHG conversion set forth in Ref. 25, where the interaction
length is 2.84 times the FH confocal length. (This condi-
tion is often approximated by an interaction length equal
to the confocal length, where the efficiency is 80% of the
maxiumum but with a reduced peak intensity.)

In addition to a choice of focusing conditions, QPM af-
fords us a choice of phase-matching angles if we can con-
struct a QPM grating to phase match a variety of noncol-
linear interactions. Decreasing the phase-matching angle
reduces spatial walk-off but also decreases the effective
dispersion length (at a fixed spot size). Maximizing the
conversion efficiency involves choosing properly both the
focusing conditions and the phase-matching angle.

With a given nonlinear material at a fixed FH wave-
length, the effective dispersion length L}, ; and the aper-
ture length L, are uniquely determined by the FH spot
size wg and the phase-matching angle 6,. Here we discuss
what choice of L, and Lp,, or equivalently w, and 6,
leads to the maximum conversion efficiency of a particu-
lar interaction at a fixed interaction length.

Including the effects of spatial walk-off and effective
dispersion,

n= Woh(D,A), (63)

where 7, is the conversion efficiency with negligible GVD
and spatial walk-off, given in Eq. (60), and we define the
efficiency reduction factor A as

02 &2

L AT
hD.A) =~ | ILg)Pexp| - - |afudE. (64)

We recall the definition of parameters A=L/L, and D=
-L/L}, ; representing the influence of spatial walk-off and
effective dispersion, respectively. The efficiency reduction
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factor is plotted in Fig. 10 for several values of D. When
|A|<1,h is simply the square of the amplitude reduction
given in Eq. (53).

The efficiency reduction factor 4 is a function of D and
A and is consequently also a function of both w, and 6.
The coupling coefficient ¢y also changes with the input
beam size, so maximizing the efficiency involves a balance
between maximizing the reduction factor 2 and maximiz-
ing the coupling coefficient c,.

We recall the definitions of the characteristic lengths
L, and Lp, ; and rewrite ¢ from Eq. (59) as

167%%d; L, ULM L [ L\
c3= 2 1/2, 52 T (65)
€cnany Ny oy7e Ly, Lb,l

Upon substitution into Eq. (63), we find that the conver-
sion efficiency is equal to
87T3/2d2L U L1/2
mE 2 A\Dh(A,D). (66)
I
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Fig. 10. (a) Surface plot of the efficiency reduction factor ~A(A,D)
as a function of A=L/L, and D=L/L}, ;. When both spatial walk-
off and effective dispersion are ignored (A<1 and D<1),
h(A,D)=1. Increased effective dispersion (D>1) leads to pulse
spreading, and the length over which the intensity is at its maxi-
mum is reduced, resulting in a decreased conversion efficiency.
Increased spatial walk-off (A >1) results in a generated SH field
that propagates away from the peak FH intensity also resulting
in a reduced effective interaction length and decreasing conver-
sion efficiency. (b) Plot of A(A,D) at fixed selected values of D. For
A<1,h(A,D)=|I,|? as given in Eq. (53) determined only by the
effective dispersion parameter D.
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Fig. 11. Normalized SH amplitude is proportional to the func-
tion VD|I(D)|? and demonstrates a peak at D=1.73. The dashed—
dotted lines indicate asymptotic behavior for D <1 where [((D)
~1 and D> 1 where I,(D)~\2/D.

At a fixed interaction length, variations in beam size w,
and phase-matching angle 6, change only A and D, so
that finding the maximum in AVDh(A ,D) will return the
focusing and phase-matching conditions for peak conver-
sion efficiency. A global optimization of the conversion ef-
ficiency predicts that the conversion efficiency saturates
to its maximum value when A tends to infinity, i.e., the
limit of large spatial walk-off corresponding to very tight
focusing or a large phase-matching angle. Practically
speaking, however, this results in an output SH envelope
with a spatial-frequency distribution that is narrow (i.e.,
a wider SH beam) and resembles the function I5(¢) shown
in Fig. 7. The resulting beam profile may be a top hat
when D<1 and I,(q)=~sinc(q/2) or may have a spatial-
frequency distribution with a slowly decaying asymmetric
tail when D> 1.

Let us examine more closely the trade-off between
beam quality and the conversion efficiency. When A
<1, h=hy=|Io(D)|* and is independent of A. In Fig. 11 we
plot VD|I;(D)|?, and it demonstrates a peak at D,
=1.73. This value of D maximizes the mid-spatial-
frequency conversion efficiency. At larger values of D, the
effective dispersion length is shorter than the interaction
length, resulting in a decreased peak intensity over a sig-
nificant portion of the interaction length. This decreased
peak intensity is the source of the decreasing conversion
efficiency when D> 1. For large pulse-front tilt |y;|> 1, we
note that D=1.73 implies L/Lp ; <1, and the entire inter-
action takes place in the near field of the FH beam.

In the limits when D<1 and D>1, Eqgs. (56) and (57)
demonstrate that the value of D affects the amplitude of
I5(q), but not the functional form. Indeed, even when D
=1, the shape of I5(q) changes very slowly with different
values of D (see Fig. 7), and one might expect that the op-
timum value of D will be near its value when A<1 for
larger values of A. This assertion can be verified numeri-
cally; the optimum value for D is nearly independent of
the choice of A. (For an absolute optimization of conver-
sion efficiency, both D and A tend to infinity, but as we
will show, a large A results in significant beam distor-
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tions. If reasonably good beam quality is desired, the op-
timum value for D can be treated independently of the
choice of A.)

With an optimum value for D, we examine how the SH
conversion changes by changing A with fixed D. With D
fixed, the phase-matching angle is fixed, and changing A
=L/L,=L6y/w, may be accomplished by changing the
beam waist w,. As A increases, the amplitude of the SH
field increases as a result of the increased intensity re-
sulting from a smaller beam waist, but the spatial-
frequency bandwidth narrows as I5(q) becomes narrower
than the Gaussian polarization envelope in Eq. (46). As a
result, the SH beam broadens, and its shape is influenced
by the shape of I5(g) as shown in Fig. 9. If |A|<1, I1(g=

—-A&) is approximately constant over the spatial-

frequency envelope of éz, and the SH beam is Gaussian,
with a beam quality parameter®® M2=1 and a beam size
that is V2 times smaller than the FH pump beam.

Figure 12 quantifies the trade-offs between conversion
efficiency and beam size and quality. Conversion effi-
ciency, beam size, and beam quality are plotted as D is
held fixed at its optimum value of D,,,=1.73. When A
=3, the conversion efficiency is at 71% of its maximum
value. The SH beam with A=3 has a waist that is ap-
proximately V2 times larger than the A<1 value, or
roughly equal to the FH beam size w, and has M?=1.10.
(The beam quality parameter M?=1 for a perfect Gauss-
ian TEMy, mode and increases with increasing higher-
order mode content. For a more complete discussion on
the concept and measurement of M2, see Ref. 26.) With
A=3 and D=1.73, h(A,D)=0.45 and the conversion effi-
ciency in Eq. (66) is

A|D| h(A,D)

10 10 10 10

Fig. 12. Trade-off of normalized conversion efficiency (top) and
beam size and quality (bottom) with optimum dispersion param-
eter D=1.73 in the presence of spatial walk-off. At a fixed value
of D, the spatial walk-off parameter A=L/L, is increased by de-
creasing the beam size w,. The increased intensity results in
higher conversion efficiency, but the resulting increase in spatial
walk-off causes an increase in SH beam size and poor SH spatial
mode quality. A compromise may be reached for A= 3, where the
conversion efficiency reaches 71% of its maximum value, but the
beam is approximately equal to the FH beam size with a beam
quality parameter M?=1.10 (M?=1 implies a Gaussian TEMj,
mode).
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If we further presume that the beam is confocally focused

in the transverse y (nondispersed) dimension for maxi-

mum conversion efficiency,”> then oy=(L\;/3.2n1)"2, and

the optimized conversion efficiency is

141.4d%,

Topt = U;. (68)
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We can compare this result with the conversion efficiency
for collinear SHG in a uniform crystal with a bandwidth-
limited length of L=2L, and confocal focusing,’

76.7d%

=—— 53Uy, (69)
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and with the conversion efficiency for collinear SHG in a
chirped QPM grating with confocal focusing,2

. . 106.6d,
neG =1.397gym="—""———3U1, (70)
€)COvnng\y

and we find that the scaling of the conversion efficiency
for all three cases is identical. The difference in the mag-
nitude of the conversion efficiency lies primarily in select-
ing the best conditions, since all three techniques require
some subjective choice regarding a trade-off. Noncollinear
SHG with spectral angular dispersion trades off beam
quality with conversion efficiency, whereas the other two
trade off bandwidth and conversion efficiency. In all three
cases, a slightly higher conversion efficiency may be ob-
tained at an expense of either decreased SH bandwidth or
reduced SH beam quality.

Since all three techniques under optimum focusing con-
ditions yield approximately identical values for energy
conversion efficiency, other considerations may influence
the experimenter’s choice regarding the best method in a
particular application. For example, using a short QPM
grating is significantly simplier than using chirped grat-
ings or spectral angular dispersion, as no dispersive ele-
ments are required. Dispersive elements are required
when either a chirped QPM grating (a grating pair or dis-
persive material is required to compress the chirped SH
output) or spectral angular dispersion is used (a grating
or prism is required at the input to impose angular dis-
persion on the FH and at the output to compensate the
angular dispersion of the generated SH field). Additional
dispersive elements add both complexity and loss. How-
ever, since a short QPM grating is much shorter than the
crystal length that may be used for the other two tech-
niques, the required focusing for best conversion requires
a much smaller spot size and results in a correspondingly
high peak intensity. If this intensity exceeds the damage
intensity, or leads to increased two-photon absorption, ei-
ther of the other two techniques allows for the same con-
version efficiency at much larger spot sizes. In the tilted
pulse-front case, the optimum is reached when the beam
size is larger than confocal and so offers a lower peak in-
tensity for the same conversion as a chirped grating of
equivalent crystal length. The peak FH intensity in non-
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collinear SHG with spectral angular dispersion under the
optimum focusing conditions discussed above is a factor of
8(Lg/L)2 lower than the peak intensity for a short crystal
of length 2L, under confocal focusing conditions and is a
factor of 4L,/L lower than for confocal focusing into a
chirped QPM crystal of equivalent length L.

If we now return to the experiment in Section 4, we can
include the effective dispersion and spatial walk-off
through the efficiency reduction factor A(A,D) in Eq. (63).
With a beam size wg=180 um and a phase-matching
angle of 6,=1.92 deg, the aperture length is 5.6 mm, mak-
ing A=L/L,=1.8 for a crystal length of 1 cm. The group-
velocity walk-off length L, is equal to 260 um for our 138
fs pulses (7p=84 fs), so that the pulse-front tilt parameter
|7l=L,/Ly=21 and the effective dispersion length is
ILp1l=1.4 mm with D=7.1. The GVD mismatch param-
eter 5p=0.31, so we expect negligible loss of bandwidth.
The corresponding efficiency reduction factor h(A,D) is
21%, making the calculated conversion efficiency 14.7%,
which is in reasonable agreement with the observed 6.7%.
We note that these values of A and D are not the optimum
values computed in our theoretical calculation, and ac-
cordingly with our 1 cm length crystal we could achieve a
higher conversion efficiency by decreasing both the phase-
matching angle and the beam size until A=3 and D
=1.73, i.e., for ,=1.56 deg and wy=91 um. With confocal
focusing in the nondispersed dimension, the peak conver-
sion efficiency calculated with Eq. (68) is 143%/nd, or
well into pump depletion with our FH pulse energy of 0.58
nd.

11. CONCLUSION

We demonstrate frequency doubling of ultrashort pulses
using spectral angular dispersion and a noncollinear ge-
ometry to eliminate the effects of GVM. Our experiment
demonstrates SHG of pulses 138 fs in duration at a FH
wavelength of 1550 nm in a PPLN crystal many times
longer than the group-velocity walk-off length with negli-
gible loss of SHG bandwidth.

In addition, we develop a theoretical model for group-
velocity-matched SHG in quasi-phase-matched materials
that includes the effects of dispersion, diffraction, and
spatial walk-off. The diffraction of a strongly tilted pulse
is treated as an effective dispersion, and a solution for the
output SH field envelope is presented for the case of a
Gaussian FH pump pulse. The diffraction of a strongly
tilted pulse envelope is separated into the diffraction of
the beam and an effective dispersion that results from the
pulse-front tilt. The SH bandwidth may be limited by mis-
match in the GVD or in the effective dispersion resulting
from the diffraction of a tilted pulse. This total effective
dispersion mismatch is characterized by a dispersion mis-
match parameter Sp, which should be less than unity to
preserve the bandwidth of SHG. If §p <1, spatial walk-off
and dispersion do not affect the frequency content of SHG
and affect only the amplitude or beam shape.

The effective dispersion resulting from a tilted pulse
front, combined with the effects of spatial walk-off, re-
sults in a reduced conversion efficiency characterized by
an efficiency reduction factor. The efficiency reduction fac-
tor affects the optimum focusing condition and phase-
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matching angle for peak conversion efficiency. This opti-
mum is found where the phase-matching angle, inversely
proportional to the pulse-front tilt, is chosen such that the
effective dispersion resulting from the diffraction of a
titled pulse has a characteristic length equal to 0.58 times
the interaction length. In addition, the beam size is cho-
sen to balance the trade-off between increasing conver-
sion efficiency and increased distortions in the beam
shape and quality due to spatial walk-off. A reasonable
balance is found when the aperture length is approxi-
mately 1/3 the interaction length.

The best achievable conversion efficiency for noncol-
linear SHG with spectral angular dispersion is indepen-
dent of the interaction length and is approximately equal
to the conversion efficiency for other methods of
ultrashort-pulse SHG under ideal focusing conditions.
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