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Tunable-chirp pulse compression in quasi-phase-matched
second-harmonic generation
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We demonstrate continuously tunable compensation of linear chirp on a first-harmonic pump pulse to pro-
duce a near-transform-limited second-harmonic output pulse through the use of a chirped, fanned, periodically
poled lithium niobate quasi-phase-matching grating. Compensation of positive and negative chirps is possible
through reversal of device orientation. The device is simple and monolithic and can be applied to compensa-
tion of a higher-order phase with minor modification. © 2002 Optical Society of America

OCIS codes: 140.7090, 190.7110, 190.2620, 190.4360, 230.4320, 320.5520.
Shaping of the temporal profiles of optical pulses
is an important tool for ultrafast optics. Recently
it was demonstrated that linearly chirped gratings
in quasi-phase-matched (QPM) nonlinear media can
compensate for the quadratic1 – 3 and higher-order4,5

phases of chirped optical pulses during second-
harmonic generation (SHG). More generally, a
theory has demonstrated the potential for nearly
arbitrary engineering of amplitudes and phases of
short optical pulses with appropriate variation of the
periods and duty cycles of aperiodic QPM gratings
during SHG6 and difference-frequency generation.7

Experiments have shown that QPM devices have the
advantage of compact monolithic design with no criti-
cal alignment necessary but have the disadvantage of
a f ixed set of grating parameters with no continuous
adjustability. Previously it was demonstrated that
fanned gratings provide continuous tuning of the QPM
period in a periodically poled lithium niobate (PPLN)
optical parametric oscillator.8 We demonstrate use of
a fanned QPM grating to achieve continuous tunability
of grating chirp during QPM SHG pulse compression,
specifically, the compression of 140-fs-long 1.554-mm
pulses stretched to 8 ps long to near-transform-limited
140-fs pulses at 777 nm. We use a chirped PPLN
QPM grating with grating chirp tunable from 0.36
to 0.21 mm22 that is capable of compensating for
first-harmonic (FH) pulse chirps from 20.271 to
20.464 ps2. We demonstrate pulse compression at a
ratio [FH pulse width to second-harmonic (SH) pulse
width] of 63 and the capability to achieve ratios of 50
to 90 with our single tunable device.

Whereas the use of a fanned grating is directly ap-
plicable to tuning more-complicated grating structures
and in other second-order nonlinear interactions such
as difference-frequency generation, we restrict our dis-
cussion to pulse compression in a QPM SHG experi-
ment. The theory for QPM SHG pulse compression
was described in detail in Ref. 6; here we summarize
pertinent results of that research.

Effective group-velocity dispersion in a QPM pulse
shaping device is the result of the interplay between
the mismatch in group velocities of the FH and SH
fields and the ability to spatially localize the conversion
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of different frequency components at different locations
in the QPM device. In general, for a chirped QPM
grating the maximum achievable group delay, tg �
dnL [where dn is the group-velocity mismatch param-
eter �dn � �vg121 2 vg221��, vg1 and vg2 are the group
velocities of the FH and SH fields, respectively; and
L is the QPM crystal length], determines the longest
chirped pulse that can be compressed with a given de-
vice. For a 5-cm-long PPLN grating designed for QPM
SHG at a wavelength of 1.55 mm �dn � 0.31 ps�mm�
the maximum group delay is 15 ps.

The local grating k-vector for a linearly chirped QPM
device is

Kg�x� � Km 1 2Dgx , (1)

where Km is set by the phase-matching condition Km �
Dk0 and Dk0 � 2k1 2 k2 is the carrier k-vector mis-
match, Dg is the grating chirp parameter, and the local
QPM period is L�x� � 2p�Kg�x�. A properly designed
QPM SHG pulse-compression device has a SHG band-
width of DVg � j2DgL�dnj chosen to be roughly three
times the FH bandwidth to reduce the effects of band-
width truncation.6

Consider a chirped FH pulse with chirp parameter
C1 � d2F1�dv2 evaluated at FH carrier frequency v1,
where F1 is the FH frequency-domain phase function.
The effect of the chirped QPM grating on SHG results
in the following chirp on the SH pulse (defined in simi-
lar fashion to C1 and evaluated at SH carrier frequency
v2):

C2 � 1�2�C1 1 dn2�Dg� . (2)

The result is zero SH chirp when the chirp of the QPM
grating is matched to the chirp of the FH field: Dg �
2dn2�C1, indicating a transform-limited SH pulse and
complete pulse compression. For a more thorough dis-
cussion of QPM SHG pulse compression, see Ref. 6.

A schematic of the fanned chirped grating design is
shown in Fig. 1. At one edge of the sample the grating
k-vector is patterned with chirp Da, and at the other
edge the chirp is Db. The domains are simply con-
nected from one side of the device to the other, so the
grating chirp as a function of lateral position y is the
weighted average of the two defined chirps:
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Fig. 1. Fanned QPM SHG pulse-compression grating.
Translation of the sample transverse to the direction of
propagation produces continuous tuning of the grating
chirp. Coordinate axes are drawn to coincide with crys-
tallographic axes in our PPLN device; reversed domains
are shaded gray.
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where W is the sample width and y is defined as zero in
the center of the sample. In this manner, translation
of the sample offers continuous tuning of Dg from Da
to Db. Note that propagation through the sample in
the reverse direction reverses the sign of the grating
chirp, permitting continuous tuning from 2Da to 2Db
as well, with the same device.

Whereas the grating chirp at the ends of the sample
�y � 6W�2� is defined to be strictly linear, this is not
in general true for all lateral positions y: Because
of the geometry of our design, it is the period, not
the k-vector, that is a weighted average of that at the
y � 6W�2 ends of the device. The next-order phase
contribution can be calculated from the design geome-
try, and we require that the higher-order phase be less
than p�2 for all positions y and all domains along the
sample length to reduce resultant higher-order phase
on the SH pulse. This requirement imposes the fol-
lowing constraint on the chirp tuning range:

�Da 2 Db�2 ,
24p2

L0L3
. (4)

It should be noted that modif ied design geometries
with slightly curved domain walls can eliminate the
higher-order phase contribution.

Inequality (4) in turn restricts the maximum fan
angle (relative to the crystal axis) to less than fmax �
�3L0L�8W 2�1�2, limiting the fan angle for our devices
�L � 4.7 cm, W � 1 cm, L0 � 18.6 mm� to less than
4 deg. However, we have found in practice that fab-
rication proves to be a tighter angular constraint in
PPLN when current fabrication techniques are used.
Because the domain walls have a preferred orientation
along the crystallographic y axis, additional domain
spreading results for patterns that have been fabri-
cated with other orientations, requiring the use of cor-
respondingly narrowed poling electrodes to maintain
the desired 50% duty cycle. Although fanned domains
have been demonstrated for angles as wide as 20 deg,9

we found experimentally that beyond 2 deg it becomes
difficult to maintain the desired duty cycle for QPM
gratings with periods near 19 mm.
We performed QPM SHG tunable pulse compression
at a FH wavelength of 1.554 mm with a PPLN grating
measuring 4.7 cm long and 1 cm wide and a nominal
QPM period L0 � 18.6 mm. The grating length
was chosen according to guidelines in Ref. 6 such
that the grating bandwidth was roughly three times
the 1�e spectral width of the pulse. Grating chirps
ranged from D1 � 0.21 mm22 (QPM periods from
18.1 to 19.2 mm) to D2 � 0.36 mm22 (QPM periods
from 17.8 to 19.7 mm�. With a GVM parameter of
dn � 0.31 ps�mm, these values imply that the QPM
grating is capable of compensating for FH pulse chirps
that range from 20.46 to 20.27 ps2.

Transform-limited pulses of 140-fs (intensity
FWHM) duration at a carrier wavelength of 1.554 mm,
from a Spectra-Physics OPAL synchronously pumped
optical parametric oscillator, are chirped by double-
passing of a grating pair pulse stretcher in the Treacy
configuration10 to 8.2-ps �C1 � 20.375 ps2� FWHM
duration. The spectrum and the autocorrelation of
the FH pulses are measured after the pulse stretcher.
The FH autocorrelation measures 12.7 ps in duration,
and the bandwidth is measured to support 140-fs
FH pulses and so is capable of generating SH pulses
as short at 100 fs at the transform limit for the
approximately Gaussian pulse shape. The resultant
1-nJ pulses are then focused into the PPLN crystal,
which is housed in a temperature-controlled oven held
at 120 ±C. The average powers of the FH and the SH
beams are measured after the PPLN sample, as are
the autocorrelation and the power spectrum of the SH
field.

The tuning behavior is shown in Fig. 2. The
theoretical curve is calculated to include second-
and third-order dispersion �Ccubic � d3F1�dv3 has
a value of 1.5 3 1023 ps3� for the grating-pair pulse
stretcher,11 showing good agreement between theory
and experiment. Our PPLN device is designed with
a linearly chirped grating and therefore compensates
for only the linear chirp (quadratic phase) on the
FH pulse. The minimum measured autocorrelation
width is 200 fs, which is 1.4 times the autocorrelation

Fig. 2. Tuning behavior of the fanned grating device.
The measured autocorrelation width is plotted (crosses)
versus grating chirp. A calculated theoretical curve (solid
curve) is plotted for comparison.
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width of 140 fs for transform-limited pulses. A simple
modif ication of the grating design from the linear
chirp given in Eq. (1) to

Kg�x� � 2p�L�x� � Km 1 2Dgx 1 3Gx2 (5)

would permit complete compensation for the cu-
bic phase as well, a significant advantage of QPM
designs.4,5 To compensate for the cubic phase (as-
sumed here to be much less than the quadratic
phase component), one should choose G such that
G � Ccubicdv3�3C1

3. Appropriately chosen Ga and
Gb coeff icients will lead to the construction of a
tunable grating design analogous to Eq. (3) for which
the linear and the quadratic grating chirps tune
together.

The experiment was conducted with confocal fo-
cusing �w0 � 75 mm�. Power-normalized conversion
efficiency �U2�U1

2, where U1 and U2 are the pulse
energies of the FH and SH fields, respectively) was
observed to be 0.9 %/nJ (pulse energies UFH � 0.88 nJ
and USH � 7.58 pJ�. Reference 6 predicts that the
conversion efficiency for a chirped QPM PPLN de-
vice will be 0.59�t0�t1�h0, where h0 (162 %/nJ at a
FH wavelength of 1.55 mm) is the eff iciency for an
unchirped FH pulse and a uniform grating at a length
of 2t0�dn. Our measured eff iciency is 63% of the
calculated theoretical value of 1.54 %/nJ.

In conclusion, we have demonstrated QPM SHG
pulse compression with tunable dispersion through the
use of a fanned grating design. The demonstrated
compression ratio of 63 (variable from 50 to 90) with
our stretcher and the QPM SHG compressor can be im-
proved with a slight modif ication of the QPM design to
include cubic phase. Straightforward extension of the
method to implement general pulse shaping in QPM
SHG6 and in QPM difference-frequency generation7

devices is possible. Future studies may include other
tunable QPM devices, including tunable two-color
SHG12 and tunable compensation of higher-order pulse
chirp.
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