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Abstract
This paper describes investigations into the mechanical losses of bonds created
by hydroxy-catalysis bonding. Evaluation of the magnitude of such losses
is important for determining thermal noise levels in bonded suspensions for
gravitational wave detectors. Three samples were investigated with bonds of
varying geometries and surface areas. In two cases, the bonds were between
two pieces of fused silica, whilst in the third a fused silica piece was attached
to a sapphire substrate. In each case sodium silicate solution was used as the
bonding agent. The thickness and Young’s modulus of the bond material were
evaluated enabling values for the intrinsic mechanical loss factor of the bonding
material to be obtained.

PACS number: 04.80.Nn

1. Introduction

Interferometric gravitational wave detectors operate by sensing very small relative
displacements of suspended mirrors. Thermal noise from the mirror test masses and their
suspensions forms one limit to detector displacement sensitivity in the frequency range from
a few tens to hundreds of hertz. Quasi-monolithic test mass suspensions using fused silica
fibres jointed to fused silica or sapphire test masses have been adopted [1], or are planned [2]
for use in interferometric detectors. These types of suspensions are designed to have very low
mechanical loss factors [2], and accordingly very low levels of thermal noise at frequencies of
interest. To preserve the low intrinsic loss factors of the suspension requires that the suspension
fibres be jointed to the test masses in a way that does not dissipate significant mechanical
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energy, and is compatible with use in vacuum. The technique of hydroxy-catalysis bonding
(or ‘silicate’ bonding) using potassium hydroxide solution has been used to construct fused
silica pendulums of extremely low mechanical loss factors [3]. A variant of this technique
which uses sodium silicate solution containing SiO2—which allows successful bonding of
surfaces with a greater figure mismatch—has been used to construct the quasi-monolithic
fused silica suspensions currently in use in the GEO600 interferometer and is intended for use
in the planned upgrade to the LIGO detectors in the US [2, 4].

In previous experiments we have measured the effect of using the hydroxy-catalysis
bonding technique on the loss factor of test samples. We then estimated the excess loss
associated with the potassium hydroxide bonding and scaled the effect to that expected in full
scale suspensions [5]. Here we present experimental results together with associated analysis
that allow the intrinsic loss factor of sodium silicate bond material to be determined. These
measurements were made at frequencies above 20 kHz. Results on samples made by us and
measured by colleagues at Syracuse University over a frequency range lower by a factor of 10
are presented in a separate paper [6].

This is of particular interest, since recent work by Levin [7], amplified by Nakagawa
[8] and Yamamoto [9], has shown that spatially inhomogeneous mechanical loss such as
that introduced by adding optical mirror coatings, or by bonding ears to the test masses
of gravitational wave detectors may introduce levels of thermal noise that are significantly
different from those predicted using the modal summation methods that have been commonly
used; see for example [10].

2. Experimental method

2.1. Measurements

Several experiments were carried out in which the mechanical loss factors for the fundamental
longitudinal modes of samples of fused silica and sapphire were measured both before and
after the jointing of two such samples or the addition of attachments to the samples by silicate
bonding. The fundamental modes were chosen to aid the analysis of the energy distributions
in the systems. These energy distributions are required in order to obtain a value of the loss of
the bond material.

Assuming all other losses in the system to be negligible, and letting the measured loss
factors of the samples before and after the addition of bonded attachments be written as φsubstrate

and φbonded, respectively, we may write, for each mode of the sample

φbonded =
(

Esubstrate

Etotal

)
φsubstrate +

(
Ebond

Etotal

)
φbond

� φsubstrate +

(
Ebond

Esubstrate

)
φbond. (1)

By calculating the ratio of the energy stored in the actual bond material, Ebond, to the
energy stored in the substrate plus the bond, Etotal (�Esubstrate), it is then possible to obtain
a value for the loss of the bond material, φbond. Three samples were studied, and a value
estimated for the loss of the bond material in each case.

Measurements were made of the loss factors of modes of unbonded test masses suspended
in vacuum using suspensions of silk thread or wire. Modes of the samples were excited
electrostatically and the resulting displacements of the front face of the sample sensed
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Figure 1. Experimental arrangement used to measure the loss factors of suspended test masses.

interferometrically. The arrangement typically used is shown in figure 1 and described in
detail by Crooks et al [11].

Once a particular mode of a sample was excited to a level significantly above that of
its background level, the excitation signal was removed, and the motion of the sample was
allowed to decay. The amplitude of the displacement of the front face as a function of time,
A(t), was monitored and the loss factor of the mode of the unbonded sample, φ(ω0), was
obtained by fitting the envelope of the data to the equation

A(t) = A0 e− φ(ω0)ω0 t

2 , (2)

where A0 is the initial displacement amplitude and ω0 is the resonant frequency of the mode.
The hydroxy-catalysis bonding technique5 [5] was then used to, in the first case, bond two

identical test masses together to create one larger sample with the same diameter, but twice
the length. In the remaining two cases, small fused silica posts or discs were bonded to the
sides of the original test masses. A brief description of this technique is given in section 2.2.
The specific geometries of the bonded samples studied are shown in figure 2. Each sample
was then re-suspended on silk thread and the loss factors of the appropriate modes measured
after the addition of the bonded attachments. The measured loss factors for the sample before
and after bonding, and the frequencies at which they were measured, are shown in table 1. For
each case, several decays were measured and the results averaged. The errors quoted arise
from this statistical mean. For case (a), where two pieces of fused silica of equal size were
bonded together, the loss of each piece was measured separately before bonding. The best
value obtained for the pair was then used as a measure for the ‘before’ loss.

In each case the addition of a bonded attachment resulted in an increase of the measured
loss factors of the modes of the mass studied. This is a result of some of the energy associated
with the resonant mode being dissipated by the thin lossy layers of silicate bonding material.
In the case of the fused silica samples the additional loss associated with the attached piece
itself is negligible as the piece is of essentially the same material as the substrate. In the

5 Stanford University has a patent for the process of hydroxide-catalysis bonding [12]. Further information on its
commercial application can be obtained from Mr Jon Sandelin, Office of Technology Licensing, Stanford University,
900 Welch Road, Suite 350, Palo Alto, CA 94304-1850, USA. E-mail: sandelin@leland.stanford.edu.
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Figure 2. Geometries for the three bonded samples investigated. The bond thickness has been
exaggerated for clarity.

Table 1. Measured loss factors for the fundamental longitudinal modes of samples of fused silica
and sapphire taken before and after the addition of silicate bonded attachments.

Frequency Frequency
before bonding after bonding

Sample (Hz) (Hz) φsubstrate φbonded

(a) Silica/silica 40 050 20 411a (7.1 ± 0.1) × 10−7 (3.7 ± 0.1) × 10−6

(b) Silica/sapphire 53 591 53 597 (3.9 ± 0.1) × 10−9 (3.6 ± 0.1) × 10−8

(c) Silica/silica 39 730 39 639 (5.5 ± 0.2) × 10−7 (5.9 ± 0.2) × 10−6

a The change in the frequency shown for the fundamental longitudinal mode is a result of the length of the bonded
mass being the sum of the lengths of two individual unbonded masses.

sapphire case, calculations similar to those in section 3.2.2 show that less than 0.1% of the
total energy of the resonant mode is stored in the attached piece. Thus the additional loss
associated with the presence of this piece is small since the piece itself is made of material
with an intrinsic loss of around 10−6.



Intrinsic mechanical loss of hydroxy-catalysis bonds 5029

Table 2. The bonded area, amount and concentration of solution used for each of the bonds studied.

Bond area Amount of bonding Proportion of sodium
Case (m2) solution (µl) silicate solution to water

(a) Silica/silica 3.12 × 10−3 12.50 1:4
(b) Silica/sapphire 5.94 × 10−5 0.27 1:4
(c) Silica/silica 5.50 × 10−4 1.50 1:6

2.2. Hydroxy-catalysis bonding

Hydroxy-catalysis bonding takes place between two surfaces of suitable oxide materials such
as silica or alumina or indeed the oxide of any element which forms a salt with the alkali
metals.

In general the surfaces to be bonded should be polished to an optical flatness of
approximately λ/10 and be thoroughly cleaned. A sodium silicate solution is then introduced
between the two pieces to be bonded and the surfaces then brought together. The sodium
silicate solution was produced from a commercial stock solution diluted with water in the
ratios as detailed in table 2. The stock solution consists of, in terms of mass, 14% NaOH, 27%
SiO2 and 59% H2O. The chemical bonding process is initiated through hydroxide-catalysed
surface hydration and dehydration at room temperature. For the case of silica surfaces, bonding
with an alkali metal hydroxide, such as potassium or sodium hydroxide, depends on the fact
that a number of siloxane bridges (Si–O–Si) are exposed on the polished surfaces of the fused
silica. Hydration with the OH ions then activates the bonding surfaces by generating two
surface silanol groups (Si–OH) per exposed siloxane bridge (Si–O–Si). Simplistically, the
dehydration then strips a water molecule from a pair of surface silanol groups, one on each
surface, and forms a siloxane bridge between them and thus a potential bond between the two
surfaces. In fact the hydroxide solution also etches the silica and forms silicate ions in the
gap between the surfaces. These link together and to the dehydrated silanol groups to form
the actual bond between the surfaces. The silicate ions produced act as a filler and allow
small mismatches in the surface flatnesses to be accommodated. It is often desirable to supply
extra silicate ions to enhance this filling process. This is why a solution of silica in sodium
hydroxide, available as sodium silicate solution and used in the bonds described in this paper,
makes an excellent bonding agent. It should be noted that repositioning of the pieces being
jointed is possible within roughly 30 to 40 s of the start of the jointing process. The maximum
bond strength is achieved after several weeks, with the exact time depending on temperature,
the concentration of the aqueous solution used and the degree of mismatch of the surface
figures of the bonded pieces; however, after only a few hours the bond has sufficient strength
to allow the fused silica pieces to be handled for normal purposes.

Table 2 gives details of the area of the bonds created in each of the three cases studied, as
well as the amount and concentration of bonding solution used.

3. Analytical techniques

To obtain an estimate of the mechanical loss factor of the bonding material, it is necessary to
analyse in more detail the distribution of energy stored in the resonating sample. In particular
we wish to calculate the fraction of energy stored in the bond layer compared to that stored in
the test mass, for the particular geometry studied in each case. All three samples studied were
right circular cylinders. Two of these were fused silica and the third sapphire. The specific
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Figure 3. Illustration of the shape of the fundamental longitudinal mode of the sample shown in
figure 2(a). This was obtained using a finite element analysis package (2, n = 0 from McMahon
[13] symmetry classifications).

sample geometries are shown schematically in figure 2. In each case the mechanical losses
measured were for samples resonating in their fundamental longitudinal modes.

As the samples resonate there are essentially forces applied to the bonds by the substrates.
These forces are indicated by the dashed arrows in figure 2, and will tend to distort the bonds
in tension/compression and/or shear. Here we will assume that the mechanical loss factor
associated with different deformations of the bond material is the same. First consider the
case in figure 2(a).

3.1. Bond losses—sample (a)

In the case shown in figure 2(a) the ratio of the energy stored in the bond to that stored in the
mass resonating in its fundamental longitudinal mode can be found using simple analytical
techniques.

3.1.1. Energy stored in substrate. First consider a mass of length L and cross-sectional area
S with bond thickness b � L, with the material properties of the bond being the same as those
of the mass. As the mass resonates in its fundamental longitudinal mode, as shown in figure 3,
it can be considered to be undergoing simple harmonic motion such that a point at position x
anywhere in the y − z plane on the mass, undergoes a displacement ψ(x) = A sin(kx), where
k = π/L. x = 0 is the centre of the bond. If the mass has Young’s modulus Y, then the
energy of a volume element of the same cross-sectional area of the mass and of length dx can
be expressed as

�E = 1
2YSA2k2 cos2(kx) dx. (3)

Thus the total energy stored in the substrate, Esubstrate, can be obtained by integration over the
length of the bar to give

Esubstrate = 1
4YSA2k2L. (4)

3.1.2. Energy stored in the silicate bond—sample (a). Using a similar analysis as for the
energy stored in the substrate, the energy stored in the volume of the bond can easily be shown
to be

Ebond = 1
2YSA2k2b. (5)
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~ 80 nm 

Figure 4. Cross-sectional image of a sodium silicate bond obtained using an atomic force
microscope. The white areas in the bond are residual polishing compound.

Then allowing for the different Young’s modulus for the bond material, as measured in
section 3.1.3, the ratio of energy in the bond to energy in the mass becomes (under the
assumption that the density of the silicate bond material and the density of the silica mass are
equal)

Ebond

Esubstrate
= 2b

L

Ysubstrate

Ybond
. (6)

This result is obtained by solving the compressional wave equation for the mass taking
into account the different acoustic impedance of the bond region.

3.1.3. Thickness and Young’s modulus of sodium silicate bonds. To determine appropriate
values for bond thickness, b, and Young’s modulus, Y, several bonds were made between pieces
of fused silica using sodium silicate solution. The bonds were then cleaved and polished, and
studied using an atomic force microscope (AFM). Figure 4 shows a cross section of one of
the sodium silicate bonds. Using the AFM, the thickness of the bonds was measured, and the
average bond thickness found to be (81 ± 4) nm. This does not appear to be inconsistent with
the surface flatness specification of λ/10 of the components.

Assessment of the elastic properties of the bond layer was undertaken using the technique
of nanoindentation. Using this technique mechanical properties can be measured with
high spatial resolution [14]. Load-displacement measurements were made with a Hysitron
Triboindenter fitted with a sharp Berkovich diamond indenter (50 nm tip end radius) on the
cross section of a sodium silicate bonded assembly with different bond thicknesses at peak
loads up to 1 mN. A value for the Young’s modulus was obtained for the bond material from
the slope of the unloading curve using the method of Oliver and Pharr [14]. Initial results
from measurements on thin surface films of the silicate bond material indicated that the elastic
modulus of the bond was much less than that of fused silica. In such circumstances the bond
region will deflect elastically more than the surrounding silica and care must be taken in the
design of the indentation experiment to ensure that the deformation of the bond region is not
affected by load support from the surrounding material. Finite element (FE) modelling was
undertaken of the nanoindentation testing of an edge-loaded bond to assess the test conditions
where reliable data from the bond material could be obtained. This model assumed a Young’s
modulus of 10 GPa for the bond material (determined from the surface layers). The results
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Table 3. Parameters needed in the calculation of the bond loss for sample (a).

Parameters Sample (a)

Ybond (GPa) 7.9
Ysubstrate (GPa) 7.2 × 101

b (m) 8.1 × 10−8

L (m) 1.4 × 10−1

of the model suggested that a bond thickness of at least 250 nm must be used to ensure
that the measurements are not affected in this way. For this reason a 1 µm thick bond was
assessed to avoid the influence of the surrounding fused silica substrate. A Young’s modulus of
7.9 GPa, approximately 11% of the value used for bulk fused silica (72 GPa) was obtained.
The assumption used here that the properties of the bond layer are constant with thickness is
the subject of ongoing research.

3.1.4. Evaluating the bond loss. We may rewrite equation (1) as

φbonded − φsubstrate = Ebond

Esubstrate
φbond. (7)

Using the data from tables 1 and 3 in equations (6) and (7), the loss factor of the bond
material in this case is found to be (2.8 ± 0.4) × 10−1. The error on this result is derived from
the error on the mean bond thickness and that of the measured mechanical losses.

3.2. Studies of bond losses—samples (b) and (c)

For the fundamental longitudinal modes of samples (b) and (c) of figure 2, the energy stored
in each bond is principally shared between that in tension/compression parallel to the plane
of the bond, Etension, and that in shear of the bond, Eshear. The total energy stored in the bond,
therefore, can be expressed as

Ebond = Etension + Eshear. (8)

It is therefore possible to revise equation (1) in the following way:

φbonded � φsubstrate + φbond

(
Etension + Eshear

Esubstrate

)
. (9)

Using appropriate values for Etension, Eshear and Esubstrate, along with measured values
for φbonded and φsubstrate we may obtain values for φbond for samples (b) and (c). The simple
symmetry of the bond in sample (a) made evaluation of the ratio of energy stored in the bond to
the mass using analytical techniques straightforward. For the geometries of bonds in samples
(b) and (c) the situation is more complicated and so here a combination of FE and analytic
treatments are used to evaluate Etension and Eshear.

3.2.1. Etension in a circular bond—sample (b). Consider the sample in figure 2(b) oscillating
in its fundamental longitudinal mode. Again let the top surface of the mass to which the bond
is attached be considered as undergoing simple harmonic motion such that a point at position
x on the mass, where x = 0 is the centre of the bond, as detailed in figure 5, undergoes a
displacement ψ(x) = A sin(kx), where k = π/L.
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Figure 5. Schematic diagram showing bonded area on sample (b).

Let the bond be of radius r and thickness b, and composed of elements of width dy.
Energy density can be expressed as 1

2 × stress × strain. Then the energy in a strip of length
2x, thickness b and width dy, can be expressed as

�E = Ybond dy xbA2k2, (10)

assuming that x � L, the length of the mass. Changing to circular coordinates, such that
x2 + y2 = r2, and integrating over the area of the bond gives

Etension = Ybond bA2k2 πr2

2
. (11)

3.2.2. Eshear in a circular bond. The shear strain, θ , at any point in the bond is related to the
parallel tensile/compressional displacement of the bond and can be expressed as

θ = αψ(x), (12)

where α is a constant whose magnitude is a function of the properties of the bond and the
attachment. The FE program Ansys6, was used to evaluate α for the geometry studied here.
However because of the very thin nature of the bond it was not possible to do this directly.
Instead a tangential force was applied along the bonded face of the attachment symmetric
about the middle of the bond such that the attachment was effectively stressed in the same way
as when the mass oscillates in its fundamental longitudinal mode. Figure 6 shows a profile
view of the fused silica post from sample (b) with such a force applied.

The image shows only the right-hand half of the cylinder, whose base is simulated to be in
contact with the resonating mass. The distortion of the lower region of the bonded attachment
is clear. The average displacement at the end of the bond was then measured as a function
of depth into the attachment. From a graphical analysis of this, the shear strain at the surface
can be found. The ratio of this shear strain to the surface displacement is a measure of α

for the case where the bond is made of the same material as the attachment. The value of α

6 Ansys is available from Wilde and Partners Ltd, Brindley Lodge, Adcroft Street, Stockport SK1 3HS, UK or via
http://www.WildeAndPartners.co.uk.
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Table 4. Parameters needed in the calculation of the bond loss for sample (b).

Parameters Sample (b)

Ybond (GPa) 7.9
Gbond (GPa) 3.95
Ysubstrate (GPa) 3.98 × 102

b (m) 8.1 × 10−8

S(m2) 7.07 × 10−4

L (m) 1 × 10−1

r (m) 4.5 × 10−3

α 4.48 × 103

for the actual bond material was obtained by scaling using the relevant mechanical properties
of the bond material and the material of the attachment.

Using standard finite element techniques the mesh size of the finite element model
was varied until the value for α converged to a value of 4478 ± 88 for case (b). (Here
the error arises from the extrapolation involved in the model convergence.) Now, since
θ = αψ(x) = αA sin(kx), the expression derived for Eshear, using methods similar to those
previously used, is

Eshear = 1

3
Gbondbα2A2k2 3π

8
r4, (13)

where Gbond is the shear modulus of the bond material. Then combining equations (4), (11),
and (13) gives

Ebond

Esubstrate
� 2πr2b

YsubstrateSL

[
Ybond +

Gbondα
2r2

4

]
. (14)

The parameters used to evaluate φbond using equations (1) and (14) are summarized in
tables 1 and 4. Note, the shear modulus of the bond material, Gbond, was approximated
as Ybond/2, thus ignoring any effect of Poisson’s ratio which we expect to be small. Then
Ebond/Esubstrate = (1.5 ± 0.2) × 10−7, giving a bond loss of (2.1 ± 0.3) × 10−1. For this case,
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Figure 7. Schematic diagram of sample (c). The diameters of the bonded pieces were greater than
the width of the flat on the fused silica mass, producing roughly rectangular bonds.

the errors are derived from the error on the mean bond thickness, the uncertainty in the α

factor and the statistical mean of the measured losses.

3.2.3. Energy stored in two rectangular bonds—sample (c). Here we deal with the case
where each bond is approximately rectangular in shape, of width w, thickness b and positioned
between x1 and x2 and −x1 and −x2 as detailed in figure 7. Following the same procedure as
above the following expressions can be derived:

Etension = 1

2
YbondbwA2k2

[
(x2 − x1) +

sin(2kx2) − sin(2kx1)

2k

]
, (15)

and

Eshear = 1

2
Gbond bwα2A2

[
(x2 − x1) − sin(2kx2) − sin(2kx1)

2k

]
. (16)

3.2.4. Energy ratio for the rectangular case. Recalling equation (4), the ratio is

Ebond

Esubstrate
= 2bw

YSk2L
ϒ, (17)

where,

ϒ = k2Ybond

[
(x2 − x1) +

sin(2kx2) − sin(2kx1)

2k

]

+ α2Gbond

[
(x2 − x1) − sin(2kx2) − sin(2kx1)

2k

]
. (18)

The relevant parameters needed to evaluate φbond using equations (1) and (17) are
summarized in tables 1 and 5. Note that α for this geometry was evaluated using FE techniques
as described previously and in this case found to be 1405 ± 71.

The ratio of energy stored in the bond to energy stored in the mass, Ebond/Esubstrate, is
thus (1.1 ± 0.1) × 10−5 and the mechanical loss of the bond material, φbond, found to be
(4.9 ± 0.5) × 10−1. These errors arise from the same sources as in case (b).
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Table 5. Parameters needed in the calculation of bond loss for sample (c).

Parameters Sample (c)

Ybond (GPa) 7.9
Gbond (GPa) 3.95
Ysubstrate (GPa) 7.2 × 101

b (m) 8.1 × 10−8

L (m) 7 × 10−2

w (m) 1.1 × 10−2

S(m2) 3.32 × 10−3

x1 (m) 5 × 10−3

x2 (m) 3.1 × 10−2

α 1.41 × 103

Table 6. Summary of results for the three bonded samples.

Sample φbond

(a) (2.8 ± 0.4) × 10−1

(b) (2.1 ± 0.3) × 10−1

(c) (4.9 ± 0.5) × 10−1

4. Summary and conclusions

Table 6 summarizes the bond losses calculated above.
From the experiments and analysis described above it can be seen that the loss factor for

silicate bonding material falls in the range of 1.8 × 10−1 to 5.4 × 10−1. It is interesting to
note that there appears to be a higher loss for the case where the bonding solution ratio was
1:6 (case (c)), as opposed to 1:4 (cases (a) and (b)). This variation in loss will be investigated
in future experiments.

The direct sources of errors in the results for mechanical loss have been discussed where
appropriate at various points in the text. However, there remains the possibility of systematic
errors associated with using simple analytical models for the mechanical systems. To make
a simple check for this, the energy ratio for case (a) was also evaluated using finite element
analysis and then compared with that obtained from the analytical model. The energy ratios
were found to be within 10% of each other and thus the systematic error is smaller than the
quoted experimental error. A similar level of systematic error is expected for the other cases
and will not be discussed further.

The bond losses are quite high compared with typical values for the intrinsic loss of fused
silica. However, the silicate bond material can be thought of as forming a very imperfect
glass with many vacancies, dislocations and incomplete bond and it should be noted that some
well-formed glasses have loss factors that are only 50 times better [15] than this bond material.
Further only a very small quantity of material is required to fabricate the mirror suspensions
and this material is located at some distance from the reflecting surface of the mirror. Modern
methods of evaluation of thermal noise [7–9] require knowledge of the spatial distribution and
level of the mechanical losses in the suspension system. The results here are significant as
they will contribute to the evaluation of the thermal noise in the mirror suspension systems
being designed for gravitational wave detectors.
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