Measurements of nonreciprocal optical effects on magnetic and superconducting materials using a fiber-optic gyroscope (abstract)^{a)}

S. Spielman, K. Fesler, C. B. Eom, T. H. Geballe, M. M. Fejer, and A. Kapitulnik^{b)} E. L. Ginzton Laboratory and Department of Applied Physics, Stanford University, Stanford, California 94305

We have modifed a fiber-optic gyroscope based on the Sagnac interferometer to measure nonreciprocal phase shifts. The instrument has a sensitivity of better than 1 μ rad and is insensitive to any reciprocal phase shifts. Thin films of high-temperature superconductors (HTSC) have been measured in search for nonreciprocal effects below T_c due to "Anyon superconductivity" ground state. No nonreciprocal phase shift was observed in any of the measured samples.¹ The Faraday effect in various magnetic thin films (e.g., EuO) have been measured using the instrument showing a great sensitivity to submonolayers of the materials.

 ^{a)}Work supported by NSF through CMR and by AFOSR through the Center for Superconductivity at Stanford University.
^{b)}Presidential Young Investigator and Alfred P. Sloan Fellow.

¹S. Spielman, K. Fesler, C. B. Eom, T. H. Geballe, M. M. Fejer, and A. Kapitulnik, Phys. Rev. Lett. (to be published).

New optical magnetic field sensor with optional white light source (abstract)

M. Abe and M. Shimosato

Tokyo Institute of Technology, Ookayama, Meguro-Ku, Tokyo 152, Japan

Y. Kozuka

Electronic Materials Laboratory, NGK Insulators, Ltd., Nagoya 467, Japan

M. Imaeda

Materials Research Laboratory, NGK Insulators, Ltd., Nagoya 467, Japan

A new type of magnetic field sensor which measures ac electric current utilizing Faraday rotation is proposed. On a Faraday element a stabilized dc bias magnetic field H^b is applied. Output signal is given by the ratio $R = I_{2\omega}/I_{\omega}$, where I_{ω} and $I_{2\omega}$ are fundamental and second harmonic signals generated by the field H^x which the ac current induces. Since R is calculated as $R = H^x/4H^b$, we can measure H^x independent not only of light intensity but also of the Verdet constant (and therefore its temperature dependence) of the Faraday element. This was supported by experiments performed at 20–100 °C for HeNe laser ($\lambda = 0.633$ and 1.15 μ m) light on Faraday elements of FR-5 paramagnetic glass and Bi-substituted YIG crystal. The bias field H^b was generated by a stabilized dc current in a coil and using a SmGdCo plastic magnet with very weak temperature dependence of remanent magnetization (<1% at T = 20-120 °C). According to theory the equation holds even when broad spectrum polychromatic light is used. This was confirmed by experiments performed with a halogen-lamp white light transmitted through an optical fiber. Calculated signal-to-noise ratio of the sensor with a polychromatic light agreed with experiments.

5117