Two-spatial-mode parametric amplifier in lithium niobate waveguides with asymmetric Y junctions

Xiuping Xie and M. M. Fejer

Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305

Received November 7, 2005; accepted November 16, 2005; posted December 12, 2005 (Doc. ID 65856)

For optical parametric amplifiers in proton-exchange waveguide devices reported to date, both the signal and the idler photons are in the TM00 mode, causing difficulty in distinguishing signal from idler. We report a two-mode optical parametric amplifier. The key components, asymmetric Y junctions, successfully launch the pump wave in a pure TM10 mode and separate the signal and the idler in the TM10 and TM00 modes with a power ratio of as much as 27.5 dB. With high parametric gain, optical parametric generation with a threshold of 300 pJ/pulse was demonstrated for 1.8 ps long pump pulses near 780 nm. These periodically poled lithium niobate waveguides are efficient integrable photon sources. © 2006 Optical Society of America

Optical parametric amplifiers are important sources of tunable ultrashort infrared pulses and are also useful photon sources. Channel waveguides can be used to enhance the intensities of the interacting waves over long interaction lengths, decreasing the required pump power. The most efficient waveguides in lithium niobate reported to date are based on reverse proton exchange, in which the threshold for optical parametric generation (OPG) reached 200 pJ for 1.8 ps long pump pulses near 780 nm. However, separating the photons of different wavelengths generated in these waveguides is difficult, especially near degeneracy. Inside the waveguides all the waves are propagating in the same direction and cannot be separated by angular selection. Outside the waveguides prisms or filters work only for wavelengths away from degeneracy and are difficult to integrate; polarization techniques fail because only TM modes are guided. In this Letter we demonstrate that mode demultiplexing with asymmetric Y junctions is a good approach to separating the signal from the idler for parametric amplifications in proton-exchange lithium niobate waveguides.

Mode demultiplexing with asymmetric Y junctions is based on the adiabatic variation of the refractive-index distribution along the device. Depending on which end the waves are launched from, asymmetric Y junctions are efficient mode multiplexers or demultiplexers within a wavelength span. For waves near 1550 nm, a power contrast of >30 dB between the TM00 and the TM10 modes had been demonstrated. To achieve mode demultiplexing in OPG we use an asymmetric Y junction as a mode multiplexer for the pump and as a mode demultiplexer for the signal and the idler.

Figure 1 shows the design of such a device and illustrates how the modes of the interacting waves evolve along it. On the input side, the TEM00 input pump beam launched into the narrow arm of the mode multiplexer is converted into the TM10 waveguide mode. Then the pump propagates through the quasi-phase-matching region and generates signal and idler in two spatial modes (the TM10 mode and the TM00 mode). On the output side, signal and idler waves in different modes will emerge from different arms of the mode demultiplexer. The widths of the two arms of the asymmetric Y junctions are 2 µm (3 µm) on the input side and 3 µm (5 µm) on the output side, designed for the pump near 780 nm and the signal (idler) near 1560 nm to produce the best mode contrast between the TM00 and the TM10 modes. In this Letter we define the OPG product with shorter (longer) wavelength as the signal (idler), and waveguide width is defined as the mask opening for proton exchange.

In the OPG experiments the chips were heated to 130 °C. The quasi-phase-matching periods of the gratings were 16.45 µm. The devices were fabricated with our typical procedure. The FWHM of the pump pulses was 1.8 ps. For different purposes we chose various waveguide widths from 8 to 14 µm in the interaction region and designed devices with or without the mode demultiplexer for the signal and the idler.

Without the mode demultiplexer we can obtain the mode contrast out of the mode multiplexer by monitoring the mode shape of the transmitted pump. Almost pure TM00 or TM10 modes were obtained when we launched a cw near 780 nm in the TEM00 mode from the wide or narrow arm of the mode multiplexer for the pump. For a wave converted into an almost pure TM10 mode, we can tune the wavelength to find the highest contrast between the peak intensities of the two lobes recorded on a camera and thus deduce the contrast between the different mode contents. The highest mode contrast measured was >30 dB.

© 2006 Optical Society of America
Figure 2 shows the curves of photon conversion and pump throughput for OPG with the pump in pure TM\textsubscript{10} mode. For a fair comparison with former results,3 we note that the length of the quasi-phase-matching gratings was 42 mm and that cascaded OPG processes were absent. With the pump at 785.7 nm, the OPG threshold was \(\sim 300 \) pJ, which is defined as that point when the parametric gain \(G \) reaches 100 dB. Here \(P \) is the pump power, \(L \) is the length of the gratings, and \(\eta \) is the normalized gain parameter in optical parametric amplification, which near degeneracy is equal to that of second-harmonic generation. We deduced that \(\eta \sim 60\% / (\text{W cm}^2) \) with the pump in the TM\textsubscript{10} mode, compared with a threshold of 200 pJ and \(\eta \sim 90\% / (\text{W cm}^2) \) with all the waves in the TM\textsubscript{00} mode.3 The maximum photon conversion efficiency reached 35\% for a pump power of 780 pJ/pulse.

The power spectra and wavelength-tuning curves with the pump in the TM\textsubscript{10} mode are more complex than those that involve only TM\textsubscript{00} modes because two near-degenerate processes exist in this regime. With either the signal or the idler in the TM\textsubscript{10} mode while the other is in the TM\textsubscript{00} mode, these two processes split because the waveguide dispersions of the two modes are different. However, they are distinguishable by use of asymmetric Y junctions.

Before examining this behavior, we measured the mode separation ability of an asymmetric Y junction by recording the power spectra of the signal that emerged from its two arms. In Fig. 3(a), all the waves involved were in the TM\textsubscript{00} mode. In Fig. 3(b) the pump was in the TM\textsubscript{10} mode, the signal near 1375 nm was in the TM\textsubscript{10} mode, and the idler near 1843 nm was in the TM\textsubscript{00} mode. The solid (dotted) curves are the power spectra of the signal out of the wide (narrow) arm of a mode demultiplexer; their power ratio thus gives the mode separation ability of the asymmetric Y junction, which is 27.5 dB in both cases.

With such good mode demultiplexers, we measured the signal power spectra for the two near-degenerate processes in a 14 \(\mu \text{m} \) wide waveguide with the pump in the TM\textsubscript{10} mode. In Fig. 4 the solid curve corresponds to the signal in the TM\textsubscript{00} mode, whereas the dotted curve corresponds to that in the TM\textsubscript{10} mode. The idler in both cases is near 1.9 \(\mu \text{m} \) and is not shown. Simulations gave a ratio of 0.7 between normalized gain parameter \(\eta \) for the two cases. Parametric gain \(G \) is \(\sim 100 \) dB near the OPG threshold; values of \(G \) for the two cases would therefore differ by \(\sim 16 \) dB, matching well the 12 dB value measured.

This difference in parametric gain depends on the waveguide width and the wavelengths of the interaction. For an 8 \(\mu \text{m} \) wide waveguide on a different chip, this difference decreased to 5 dB when the wavelength of the pump was tuned to 784.4 nm to bring the signal and the idler near degeneracy. Figure 5 shows the broadband signal and idler near degeneracy out of the two arms of a mode demultiplexer. The solid (dotted) curve corresponds to the OPG product in the TM\textsubscript{00}/(TM\textsubscript{10}) mode. The mode separation ability of the asymmetric Y junctions was \(\sim 20 \) dB from 1450 to 1700 nm. The sharp peaks near 1465 and 1689 nm are from cascaded OPG,3 which would be absent in the low-gain regime if the devices were used as photon-pair sources. Other than these peaks, the curves have two pairs of peaks: 1485 and 1662 nm, and 1538 and 1600 nm, corresponding to
the center wavelengths of signal and idler from the two near-degenerate processes. Because of the split of the two processes, the total bandwidth is wider than it would be if only one process existed.

The wavelength-tuning curves for various OPG processes in a 9.5 μm wide waveguide were deduced from the power spectra obtained at different pump wavelengths. In Fig. 6 the curves show values from simulations; the symbols, from measurements. The dashed curve corresponds to OPG with all the waves in the TM00 mode. The solid (dotted) curve corresponds to the OPG products in the TM00(TM10) mode with the pump in the TM10 mode. Unlike in OPG involving only TM00 modes, in general two pairs of signal–idler exist at every pump wavelength when the pump is in the TM10 mode. Moreover, instead of ending at degeneracy, the possible pump wavelength for OPG extends to the point where the group velocities of the signal (in the TM10 mode) and the idler (in the TM00 mode) match, at the extreme points of both the solid and dotted curves in Fig. 6.

In summary, our waveguide devices with asymmetric Y junctions are highly effective in mode demultiplexing for optical parametric amplification. The threshold for OPG with the pump in the TM10 mode was as low as 300 pJ, and the maximum photon conversion efficiency reached 35%. The mode contrast out of the mode multiplexer designed for a pump wavelength near 780 nm reached 30 dB, and the mode separation ability of the mode demultiplexer designed for the signal and the idler reached 27.5 dB. We have therefore illustrated a new approach to generating and separating signal and idler waves for compact and efficient tunable light or photon-pair sources.

This research was supported by the U.S. Air Force Office of Scientific Research through contracts F49620-02-1-0240 and the Multidisciplinary University Research Initiative (MURI) Center for Photonic Quantum Information Systems (U.S. Army Research Office/Advanced Research and Development Activity program DAAD19-03-1-0199). We acknowledge the support of Crystal Technology, Inc. X. Xie’s e-mail address is xpxie@stanford.edu.

References